568 research outputs found

    14-moment maximum-entropy modelling of collisionless ions for Hall thruster discharges

    Full text link
    Ions in Hall thruster devices are often characterized by a low collisionality. In the presence of acceleration fields and azimuthal electric field waves, this results in strong deviations from thermodynamic equilibrium, introducing kinetic effects. This work investigates the application of the 14-moment maximum-entropy model to this problem. This method consists in a set of 14 PDEs for the density, momentum, pressure tensor components, heat flux and fourth-order moment associated to the particle velocity distribution function. The model is applied to the study of collisionless ion dynamics in a Hall thruster-like configuration, and its accuracy is assessed against different models, including the kinetic solution. Three test cases are considered: a purely axial acceleration problem, the problem of ion-wave trapping and finally the evolution of ions in the axial-azimuthal plane. Most of this work considers ions only, and the coupling with electrons is removed by prescribing reasonable values of the electric field. This allows us to obtain a direct comparison among different ion models. However, the possibility to run self-consistent plasma simulations is also briefly discussed, considering quasi-neutral or multi-fluid models. The maximum-entropy system appears to be a robust and accurate option for the considered test cases. The accuracy is improved over the simpler pressureless gas model (cold ions) and the Euler equations for gas dynamics, while the computational cost shows to remain much lower than direct kinetic simulations

    Development of Detailed Chemistry Models for Boundary Layer Catalytic Recombination

    Get PDF
    During the (re-)entry phase of a space vehicle, the gas flow in the shock layer can be in a state of strong thermal non-equilibrium. Under these circumstances, the population of the internal energy levels of the atoms and molecules of the gas deviates from the Boltzmann distribution. A substantial increase of the heat flux transferred from the gas to the vehicle is possible, as the thermal protection system of the vehicle acts as a catalyzer. The objective of the paper is to show how thermal non-equilibrium and catalysis can jointly influence wall heat flux predictions. In order to study thermal non-equilibrium effects a coarse-grained State-to-State model for nitrogen is used coupled with a phenomenological model for catalysis. From the numerical simulations performed, an important effect on the heat flux has been observed due to the interaction of catalysis and thermal non-equilibrium at the wall

    Lagrangian diffusive reactor for detailed thermochemical computations of plasma flows

    Full text link
    The simulation of thermochemical nonequilibrium for the atomic and molecular energy level populations in plasma flows requires a comprehensive modeling of all the elementary collisional and radiative processes involved. Coupling detailed chemical mechanisms to flow solvers is computationally expensive and often limits their application to 1D simulations. We develop an efficient Lagrangian diffusive reactor moving along the streamlines of a baseline flow simulation to compute detailed thermochemical effects. In addition to its efficiency, the method allows us to model both continuum and rarefied flows, while including mass and energy diffusion. The Lagrangian solver is assessed for several testcases including strong normal shockwaves, as well as 2D axisymmetric blunt-body hypersonic rarefied flows. In all the testcases performed, the Lagrangian reactor improves drastically the baseline simulations. The computational cost of a Lagrangian recomputation is typically orders of magnitude smaller with respect to a full solution of the problem. The solver has the additional benefit of being immune from statistical noise, which strongly affects the accuracy of DSMC simulations, especially considering minor species in the mixture. The results demonstrate that the method enables applying detailed mechanisms to multidimensional solvers to study thermo-chemical nonequilibrium flows

    Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia

    Get PDF
    Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function
    • …
    corecore