9,735 research outputs found

    First-principles nonequilibrium Green's function approach to transient photoabsorption: Application to atoms

    Full text link
    We put forward a first-principle NonEquilibrium Green's Function (NEGF) approach to calculate the transient photoabsorption spectrum of optically thin samples. The method can deal with pump fields of arbitrary strength, frequency and duration as well as for overlapping and nonoverlapping pump and probe pulses. The electron-electron repulsion is accounted for by the correlation self-energy, and the resulting numerical scheme deals with matrices that scale quadratically with the system size. Two recent experiments, the first on helium and the second on krypton, are addressed. For the first experiment we explain the bending of the Autler-Townes absorption peaks with increasing the pump-probe delay \t, and relate the bending to the thickness and density of the gas. For the second experiment we find that sizable spectral structures of the pump-generated admixture of Kr ions are fingerprints of {\em dynamical correlation} effects, and hence they cannot be reproduced by time-local self-energy approximations. Remarkably, the NEGF approach also captures the retardation of the absorption onset of Kr2+^{2+} with respect to Kr1+^{1+} as a function of \t.Comment: 13 pages, 8 captioned figure

    Gaia Data Release 1 Open cluster astrometry: performance, limitations, and future prospects

    Get PDF
    Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information. Aims. We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters. Methods. Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed. Results. Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier Hipparcos-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters. Conclusions. The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the Hipparcos data, with clearly increased luminosities for older A and F dwarfs

    Charge dynamics in molecular junctions: Nonequilibrium Green's Function approach made fast

    Full text link
    Real-time Green's function simulations of molecular junctions (open quantum systems) are typically performed by solving the Kadanoff-Baym equations (KBE). The KBE, however, impose a serious limitation on the maximum propagation time due to the large memory storage needed. In this work we propose a simplified Green's function approach based on the Generalized Kadanoff-Baym Ansatz (GKBA) to overcome the KBE limitation on time, significantly speed up the calculations, and yet stay close to the KBE results. This is achieved through a twofold advance: first we show how to make the GKBA work in open systems and then construct a suitable quasi-particle propagator that includes correlation effects in a diagrammatic fashion. We also provide evidence that our GKBA scheme, although already in good agreement with the KBE approach, can be further improved without increasing the computational cost.Comment: 13 pages, 13 figure

    Crossover from reptation to Rouse dynamics in a one-dimensional model

    Full text link
    A simple one-dimensional model is constructed for polymer motion. It exhibits the crossover from reptation to Rouse dynamics through gradually allowing hernia creation and annihilation. The model is treated by the density matrix technique which permits an accurate finite-size-scaling analysis of the behavior of long polymers.Comment: 5 Pages RevTeX and 5 PostScript figures included (to appear in Physical Review E

    Crossover from Reptation to Rouse dynamics in the Cage Model

    Full text link
    The two-dimensional cage model for polymer motion is discussed with an emphasis on the effect of sideways motions, which cross the barriers imposed by the lattice. Using the Density Matrix Method as a solver of the Master Equation, the renewal time and the diffusion coefficient are calculated as a function of the strength of the barrier crossings. A strong crossover influence of the barrier crossings is found and it is analyzed in terms of effective exponents for a given chain length. The crossover scaling functions and the crossover scaling exponents are calculated.Comment: RevTeX, 11 PostScript figures include

    Real-time switching between multiple steady-states in quantum transport

    Get PDF
    We study transport through an interacting model system consisting of a central correlated site coupled to finite bandwidth tight-binding leads, which are considered as effectively noninteracting. Its nonequilibrium properties are determined by real-time propagation of the Kadanoff-Baym equations after applying a bias voltage to the system. The electronic interactions on the central site are incorporated by means of self-energy approximations at Hartree-Fock, second Born and GW level. We investigate the conditions under which multiple steady-state solutions occur within different self-energy approximations, and analyze in detail the nature of these states from an analysis of their spectral functions. At the Hartree-Fock level at least two stable steady-state solutions with different densities and currents can be found. By applying a gate voltage-pulse at a given time we are able to switch between these solutions. With the same parameters we find only one steady-state solution when the self-consistent second Born and GW approximations are considered. We therefore conclude that treatment of many-body interactions beyond mean-field can destroy bistability and lead to qualitatively different results as compared those at mean-field level.Comment: 10 pages, 8 figures, Submitted at "Progress in Nonequilibrium Green's Functions IV" conferenc

    Atomic quasi-Bragg diffraction in a magnetic field

    Get PDF
    We report on a new technique to split an atomic beam coherently with an easily adjustable splitting angle. In our experiment metastable helium atoms in the |{1s2s}^3S_1 M=1> state diffract from a polarization gradient light field formed by counterpropagating \sigma^+ and \sigma^- polarized laser beams in the presence of a homogeneous magnetic field. In the near-adiabatic regime, energy conservation allows the resonant exchange between magnetic energy and kinetic energy. As a consequence, symmetric diffraction of |M=0> or |M=-1> atoms in a single order is achieved, where the order can be chosen freely by tuning the magnetic field. We present experimental results up to 6th order diffraction (24 \hbar k momentum splitting, i.e., 2.21 m/s in transverse velocity) and present a simple theoretical model that stresses the similarity with conventional Bragg scattering. The resulting device constitutes a flexible, adjustable, large-angle, three-way coherent atomic beam splitter with many potential applications in atom optics and atom interferometry.Comment: 4 pages, 5 figure

    Kadanoff-Baym approach to time-dependent quantum transport in AC and DC fields

    Full text link
    We have developed a method based on the embedded Kadanoff-Baym equations to study the time evolution of open and inhomogeneous systems. The equation of motion for the Green's function on the Keldysh contour is solved using different conserving many-body approximations for the self-energy. Our formulation incorporates basic conservation laws, such as particle conservation, and includes both initial correlations and initial embedding effects, without restrictions on the time-dependence of the external driving field. We present results for the time-dependent density, current and dipole moment for a correlated tight binding chain connected to one-dimensional non-interacting leads exposed to DC and AC biases of various forms. We find that the self-consistent 2B and GW approximations are in extremely good agreement with each other at all times, for the long-range interactions that we consider. In the DC case we show that the oscillations in the transients can be understood from interchain and lead-chain transitions in the system and find that the dominant frequency corresponds to the HOMO-LUMO transition of the central wire. For AC biases with odd inversion symmetry odd harmonics to high harmonic order in the driving frequency are observed in the dipole moment, whereas for asymmetric applied bias also even harmonics have considerable intensity. In both cases we find that the HOMO-LUMO transition strongly mixes with the harmonics leading to harmonic peaks with enhanced intensity at the HOMO-LUMO transition energy.Comment: 16 pages, 9 figures. Submitted at "Progress in Nonequilibrium Green's Functions IV" conferenc

    Correlation effects in bistability at the nanoscale: steady state and beyond

    Get PDF
    The possibility of finding multistability in the density and current of an interacting nanoscale junction coupled to semi-infinite leads is studied at various levels of approximation. The system is driven out of equilibrium by an external bias and the non-equilibrium properties are determined by real-time propagation using both time-dependent density functional theory (TDDFT) and many-body perturbation theory (MBPT). In TDDFT the exchange-correlation effects are described within a recently proposed adiabatic local density approximation (ALDA). In MBPT the electron-electron interaction is incorporated in a many-body self-energy which is then approximated at the Hartree-Fock (HF), second-Born (2B) and GW level. Assuming the existence of a steady-state and solving directly the steady-state equations we find multiple solutions in the HF approximation and within the ALDA. In these cases we investigate if and how these solutions can be reached through time evolution and how to reversibly switch between them. We further show that for the same cases the inclusion of dynamical correlation effects suppresses bistability.Comment: 13 pages, 12 figure
    • …
    corecore