43,186 research outputs found

    Design, fabrication and evaluation of chalcogenide glass Luneburg lenses for LiNbO3 integrated optical devices

    Get PDF
    Optical waveguide Luneburg lenses of arsenic trisulfide glass are described. The lenses are formed by thermal evaporation of As2S3 through suitably placed masks onto the surface of LiNbO3:Ti indiffused waveguides. The lenses are designed for input apertures up to 1 cm and for speeds of f/5 or better. They are designed to focus the TM sub 0 guided mode of a beam of wavelength, external to the guide, of 633 nm. The refractive index of the As2S3 films and the changes induced in the refractive index by exposure to short wavelength light were measured. Some correlation between film thickness and optical properties was noted. The short wavelength photosensitivity was used to shorten the lens focal length from the as deposited value. Lenses of rectangular shape, as viewed from above the guide, as well as conventional circular Luneburg lenses, were made. Measurements made on the lenses include thickness profile, general optical quality, focal length, quality of focal spot, and effect of ultraviolet irradiation on optical properties

    Cosmological Symmetry Breaking, Pseudo-scale invariance, Dark Energy and the Standard Model

    Full text link
    The energy density of the universe today may be dominated by the vacuum energy of a slowly rolling scalar field. Making a quantum expansion around such a time dependent solution is found to break fundamental symmetries of quantum field theory. We call this mechanism cosmological symmetry breaking and argue that it is different from the standard phenomenon of spontaneous symmetry breaking. We illustrate this with a toy scalar field theory, whose action displays a U(1) symmetry. We identify a symmetry, called pseudo-scale invariance, which sets the cosmological constant exactly equal to zero, both in classical and quantum theory. This symmetry is also broken cosmologically and leads to a nonzero vacuum or dark energy. The slow roll condition along with the observed value of dark energy leads to a value of the background scalar field of the order of Planck mass. We also consider a U(1) gauge symmetry model. Cosmological symmetry breaking, in this case, leads to a non zero mass for the vector field. We also show that a cosmologically broken pseudo-scale invariance can generate a wide range of masses.Comment: 18 pages, no figure

    The infall of the Virgo elliptical galaxy M60 toward M87 and the gaseous structures produced by Kelvin-Helmholtz instabilities

    Get PDF
    We present Chandra observations of hot gas structures, characteristic of gas stripping during infall, in the Virgo cluster elliptical galaxy M60 (NGC4649) located 1 Mpc east of M87. 0.5−2 keV Chandra X-ray images show a sharp leading edge in the surface brightness 12.4±0.1 kpc north and west of the galaxy center in the direction of M87 characteristic of a merger cold front due to M60's motion through the Virgo ICM. We measured a temperature of 1.00±0.02 keV for abundance 0.5Z⊙ inside the edge and 1.37+0.35−0.19 keV for abundance 0.1Z⊙ in the Virgo ICM free stream region. We find that the observed jump in surface brightness yields a density ratio of 6.44+1.04−0.67 between gas inside the edge and in the cluster free stream region. If the edge is a cold front due solely to the infall of M60 in the direction of M87, we find a pressure ratio of 4.7+1.7−1.4 and Mach number 1.7±0.3. For 1.37 keV Virgo gas we find a total infall velocity for M60 of 1030±180 kms−1. We calculate the motion in the plane of the sky to be 1012+183−192 km−1 implying an inclination angle Ο=11±3 degrees. Surface brightness profiles show the presence of a faint diffuse gaseous tail. We identify filamentary, gaseous wing structures caused by the galaxy's motion through the ICM. The structure and dimensions of these wings are consistent with simulations of Kelvin-Helmholtz instabilities as expected if the gas stripping is close to inviscid

    An Economic analysis of the potential for precision farming in UK cereal production

    Get PDF
    The results from alternative spatial nitrogen application studies are analysed in economic terms and compared to the costs of precision farming hardware, software and other services for cereal crops in the UK. At current prices, the benefits of variable rate application of nitrogen exceed the returns from a uniform application by an average of ÂŁ22 ha−1 The cost of the precision farming systems range from ÂŁ5 to ÂŁ18 ha−1 depending upon the system chosen for an area of 250 ha. The benefits outweigh the associated costs for cereal farms in excess of 80 ha for the lowest price system to 200–300 ha for the more sophisticated systems. The scale of benefits obtained depends upon the magnitude of the response to the treatment and the proportion of the field that will respond. To be cost effective, a farmed area of 250 ha of cereals, where 30% of the area will respond to variable treatment, requires an increase in crop yield in the responsive areas of between 0·25 and 1.00 t ha−1 (at ÂŁ65 t−1) for the basic and most expensive precision farming systems, respectively

    Photometry of SN 2002ic and Implications for the Progenitor Mass-Loss History

    Full text link
    We present new pre-maximum and late-time optical photometry of the Type Ia/IIn supernova 2002ic. These observations are combined with the published V-band magnitudes of Hamuy et al. (2003) and the VLT spectrophotometry of Wang et al. (2004) to construct the most extensive light curve to date of this unusual supernova. The observed flux at late time is significantly higher relative to the flux at maximum than that of any other observed Type Ia supernova and continues to fade very slowly a year after explosion. Our analysis of the light curve suggests that a non-Type Ia supernova component becomes prominent ∌20\sim20 days after explosion. Modeling of the non-Type Ia supernova component as heating from the shock interaction of the supernova ejecta with pre-existing circumstellar material suggests the presence of a ∌1.71015\sim1.7 10^{15} cm gap or trough between the progenitor system and the surrounding circumstellar material. This gap could be due to significantly lower mass-loss ∌15(vw/10km/s)−1\sim15 (v_w/10 km/s)^{-1} years prior to explosion or evacuation of the circumstellar material by a low-density fast wind. The latter is consistent with observed properties of proto-planetary nebulae and with models of white-dwarf + asymptotic giant branch star progenitor systems with the asymptotic giant branch star in the proto-planetary nebula phase.Comment: accepted for publication in Ap

    The Three-Nucleon System Near the N-d Threshold

    Get PDF
    The three-nucleon system is studied at energies a few hundred keV above the N-d threshold. Measurements of the tensor analyzing powers T20T_{20} and T21T_{21} for p-d elastic scattering at Ec.m.=432E_{c.m.}=432 keV are presented together with the corresponding theoretical predictions. The calculations are extended to very low energies since they are useful for extracting the p-d scattering lengths from the experimental data. The interaction considered here is the Argonne V18 potential plus the Urbana three-nucleon potential. The calculation of the asymptotic D- to S-state ratio for 3^3H and 3^3He, for which recent experimental results are available, is also presented.Comment: Latex, 11 pages, 2 figures, to be published in Phy.Lett.

    Hydrodynamics of the stream-disk impact in interacting binaries

    Get PDF
    We use hydrodynamic simulations to provide quantitative estimates of the effects of the impact of the accretion stream on disks in interacting binaries. For low accretion rates, efficient radiative cooling of the hotspot region can occur, and the primary consequence of the stream impact is stream overflow toward smaller disk radii. The stream is well described by a ballistic trajectory, but larger masses of gas are swept up and overflow at smaller, but still highly supersonic, velocities. If cooling is inefficient, overflow still occurs, but there is no coherent stream inward of the disk rim. Qualitatively, the resulting structure appears as a bulge extending downstream along the disk rim. We calculate the mass fraction and velocity of the overflowing component as a function of the important system parameters, and discuss the implications of the results for X-ray observations and doppler tomography of cataclysmic variables, low-mass X-ray binaries and supersoft X-ray sources.Comment: 16 pages, including 8 figures. 1 color figure as a jpeg. ApJ, in pres

    Up and down the number line: modelling collaboration in contrasting school and home environments

    Get PDF
    This paper is concerned with user modelling issues such as adaptive educational environments, adaptive information retrieval, and support for collaboration. The HomeWork project is examining the use of learner modelling strategies within both school and home environments for young children aged 5 – 7 years. The learning experience within the home context can vary considerably from school especially for very young learners, and this project focuses on the use of modelling which can take into account the informality and potentially contrasting learning styles experienced within the home and school

    Feasibility investigation of integrated optics Fourier transform devices

    Get PDF
    The possibility of producing an integrated optics data processing device based upon Fourier transformations or other parallel processing techniques, and the ways in which such techniques may be used to upgrade the performance of present and projected NASA systems were investigated. Activities toward this goal include; (1) production of near-diffraction-limited geodesic lenses in glass waveguides; (2) development of grinding and polishing techniques for the production of geodesic lenses in LiNbO3 waveguides; (3) development of a characterization technique for waveguide lenses; and (4) development of a theory for corrected aspheric geodesic lenses. A holographic subtraction system was devised which should be capable of rapid on-board preprocessing of a large number of parallel data channels. The principle involved is validated in three demonstrations
    • 

    corecore