29,829 research outputs found

    Semiconductor saturable absorbers for ultrafast THz signals

    Get PDF
    We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP and Ge in THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum states, due to conduction band nonparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and non-saturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse shortening, and an increase of the group refractive index of the samples at higher THz pulse peak fields.Comment: Submitted to Appl. Phys. Lett

    Exploiting the Symmetry of the Resonator Mode to Enhance PELDOR Sensitivity.

    Get PDF
    Pulsed electron paramagnetic resonance (EPR) spectroscopy using microwaves at two frequencies can be employed to measure distances between pairs of paramagnets separated by up to 10 nm. The method, combined with site-directed mutagenesis, has become increasingly popular in structural biology for both its selectivity and capability of providing information not accessible through more standard methods such as nuclear magnetic resonance and X-ray crystallography. Despite these advantages, EPR distance measurements suffer from poor sensitivity. One contributing factor is technical: since 65 MHz typically separates the pump and detection frequencies, they cannot both be located at the center of the pseudo-Lorentzian microwave resonance of a single-mode resonator. To maximize the inversion efficiency, the pump pulse is usually placed at the center of the resonance, while the observer frequency is placed in the wing, with consequent reduction in sensitivity. Here, we consider an alternative configuration: by spacing pump and observer frequencies symmetrically with respect to the microwave resonance and by increasing the quality factor, valuable improvement in the signal-to-noise ratio can be obtained

    Bifurcation of standing waves into a pair of oppositely traveling waves with oscillating amplitudes caused by a three-mode interaction

    Full text link
    A novel flow state consisting of two oppositely travelling waves (TWs) with oscillating amplitudes has been found in the counterrotating Taylor-Couette system by full numerical simulations. This structure bifurcates out of axially standing waves that are nonlinear superpositions of left and right handed spiral vortex waves with equal time-independent amplitudes. Beyond a critical driving the two spiral TW modes start to oscillate in counterphase due to a Hopf bifurcation. The trigger for this bifurcation is provided by a nonlinearly excited mode of different symmetry than the spiral TWs. A three-mode coupled amplitude equation model is presented that captures this bifurcation scenario. The mode-coupling between two symmetry degenerate critical modes and a nonlinearly excited one that is contained in the model can be expected to occur in other structure forming systems as well.Comment: 4 pages, 5 figure

    The Effects of Additives on the Physical Properties of Electroformed Nickel and on the Stretch of Photoelectroformed Nickel Components

    Full text link
    The process of nickel electroforming is becoming increasingly important in the manufacture of MST products, as it has the potential to replicate complex geometries with extremely high fidelity. Electroforming of nickel uses multi-component electrolyte formulations in order to maximise desirable product properties. In addition to nickel sulphamate (the major electrolyte component), formulation additives can also comprise nickel chloride (to increase nickel anode dissolution), sulphamic acid (to control pH), boric acid (to act as a pH buffer), hardening/levelling agents (to increase deposit hardness and lustre) and wetting agents (to aid surface wetting and thus prevent gas bubbles and void formation). This paper investigates the effects of some of these variables on internal stress and stretch as a function of applied current density.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Competition between Traveling Fluid Waves of Left and Right Spiral Vortices and Their Different Amplitude Combinations

    Full text link
    Stability, bifurcation properties, and the spatiotemporal behavior of different nonlinear combination structures of spiral vortices in the counter rotating Taylor-Couette system are investigated by full numerical simulations and by coupled amplitude equation approximations. Stable cross-spiral structures with continuously varying content of left and right spiral modes are found. They provide a stability transferring connection between the initially stable, axially counter propagating wave states of pure spirals and the axially standing waves of so-called ribbons that become stable slightly further away from onset of vortex flow.Comment: 4 pages, 5 figure

    Spectral properties and geology of bright and dark material on dwarf planet Ceres

    Full text link
    Variations and spatial distributions of bright and dark material on dwarf planet Ceres play a key role in understanding the processes that have led to its present surface composition. We define limits for bright and dark material in order to distinguish them consistently, based on the reflectance of the average surface using Dawn Framing Camera data. A systematic classification of four types of bright material is presented based on their spectral properties, composition, spatial distribution, and association with specific geomorphological features. We found obvious correlations of reflectance with spectral shape (slopes) and age; however, this is not unique throughout the bright spots. Although impact features show generally more extreme reflectance variations, several areas can only be understood in terms of inhomogeneous distribution of composition as inferred from Dawn Visible and Infrared Spectrometer data. Additional material with anomalous composition and spectral properties are rare. The identification of the composition and origin of the dark, particularly the darkest material, remains to be explored. The spectral properties and the morphology of the dark sites suggest an endogenic origin, but it is not clear whether they are more or less primitive surficial exposures or excavated subsurface but localized material. The reflectance, spectral properties, inferred composition, and geologic context collectively suggest that the bright and dark material tends to gradually change toward the average surface over time. This could be because of multiple processes, i.e., impact gardening/space weathering, and lateral mixing, including thermal and aqueous alteration, accompanied by changes in composition and physical properties such as grain size, surface temperature, and porosity (compaction).Comment: Meteoritics and Planetary Science; Dawn at Ceres special issu
    • …
    corecore