590 research outputs found

    HLA-B37 and HLA-A2.1 molecules bind largely nonoverlapping sets of peptides.

    Full text link

    Selective targeting of IL-2 to NKG2D bearing cells for improved immunotherapy

    Get PDF
    Despite over 20 years of clinical use, IL-2 has not fulfilled expectations as a safe and effective form of tumour immunotherapy. Expression of the high affinity IL-2Rα chain on regulatory T cells mitigates the anti-tumour immune response and its expression on vascular endothelium is responsible for life threatening complications such as diffuse capillary leak and pulmonary oedema. Here we describe the development of a recombinant fusion protein comprised of a cowpox virus encoded NKG2D binding protein (OMCP) and a mutated form of IL-2 with poor affinity for IL-2Rα. This fusion protein (OMCP-mutIL-2) potently and selectively activates IL-2 signalling only on NKG2D-bearing cells, such as natural killer (NK) cells, without broadly activating IL-2Rα-bearing cells. OMCP-mutIL-2 provides superior tumour control in several mouse models of malignancy and is not limited by mouse strain-specific variability of NK function. In addition, OMCP-mutIL-2 lacks the toxicity and vascular complications associated with parental wild-type IL-2

    Burdigalian deposits of the Santa Cruz formation in the Sierra Baguales, austral (magallanes) basin: Age, depositional environment and vertebrate fossils

    Get PDF
    A succession of marine and continental strata on the southern flank of Cerro Cono in the Sierra Baguales, northeast of Torres del Paine, can be correlated with stratigraphic units exposed along the southern border of the Lago Argentino region in Santa Cr

    A video guide of five access methods to the splenic flexure: the concept of the splenic flexure box

    Get PDF
    Aim: The aim of this study was to describe all the possible approaches for laparoscopic splenic flexure mobilization (SFM), each suitable for specific situations, and create an illustrated system to show SFM approaches in an easy and practical way to make it easy to learn and teach. Methods: Two different phases. First part: Cadaver-based study of the colonic splenic flexure anatomy. In order to demonstrate the different approaches, a balloon was placed through the colonic hepatic flexure in the lesser sac without sectioning any of the fixing ligaments of the splenic flexure. Second part: A real case series of laparoscopic SFM. Results: First part: 11 cadavers were dissected. Five potential approaches to SFM were found: anterior, trans-omentum, lateral, medial infra-mesocolic, and medial trans-mesocolic. The illustrative system developed was named: Splenic Flexure “Box”(SFBox). Second part: One of the types of SFM described in first part was used in five patients with colorectal cancer. Each laparoscopic approach to the splenic flexure was illustrated in a video accompanied by illustration aids delineating the access. Conclusion: With the cadaver dissection and subsequent demonstration in real-life laparoscopic surgery, we have shown five types of laparoscopic splenic flexure mobilization. The Splenic Flexure “Box” is a useful way to learn and teach this surgical maneuver

    Diurnal Differences in Intracellular Replication Within Splenic Macrophages Correlates With the Outcome of Pneumococcal Infection

    Get PDF
    Circadian rhythms affect the progression and severity of bacterial infections including those caused by Streptococcus pneumoniae, but the mechanisms responsible for this phenomenon remain largely elusive. Following advances in our understanding of the role of replication of S. pneumoniae within splenic macrophages, we sought to investigate whether events within the spleen correlate with differential outcomes of invasive pneumococcal infection. Utilising murine invasive pneumococcal disease (IPD) models, here we report that infection during the murine active phase (zeitgeber time 15; 15h after start of light cycle, 3h after start of dark cycle) resulted in significantly faster onset of septicaemia compared to rest phase (zeitgeber time 3; 3h after start of light cycle) infection. This correlated with significantly higher pneumococcal burden within the spleen of active phase-infected mice at early time points compared to rest phase-infected mice. Whole-section confocal microscopy analysis of these spleens revealed that the number of pneumococci is significantly higher exclusively within marginal zone metallophilic macrophages (MMMs) known to allow intracellular pneumococcal replication as a prerequisite step to the onset of septicaemia. Pneumococcal clusters within MMMs were more abundant and increased in size over time in active phase-infected mice compared to those in rest phase-infected mice which decreased in size and were present in a lower percentage of MMMs. This phenomenon preceded significantly higher levels of bacteraemia alongside serum IL-6 and TNF-alpha concentrations in active phase-infected mice following re-seeding of pneumococci into the blood. These data greatly advance our fundamental knowledge of pneumococcal infection by linking susceptibility to invasive pneumococcal infection to variation in the propensity of MMMs to allow persistence and replication of phagocytosed bacteria. These findings also outline a somewhat rare scenario whereby the active phase of an organism's circadian cycle plays a seemingly counterproductive role in the control of invasive infection

    Major Allergen Content in Allergen Immunotherapy Products: The Limited Value of Numbers

    Full text link
    The prevalence of allergic disorders has increased drastically over the last 50 years to the extent that they can be considered epidemic. At present, allergen-specific immunotherapy (AIT) is the only therapy that targets the underlying cause of allergic disorders, and evidence of its superiority is based on data accumulated from clinical trials and observational studies demonstrating efficacy and safety. However, several aspects remain unresolved, such as harmonization and standardization of manufacturing and quantification procedures across manufacturers, homogeneous reporting of strength, and the establishment of international reference standards for many allergens. This article discusses issues related to the measurement of major allergen content in AIT extracts, raising the question of whether comparison of products from different manufacturers is an appropriate basis for selecting a specific AIT product. Allergen standardization in immunotherapy products is critical for ensuring quality and, thereby, safety and efficacy. However, lack of harmonization in manufacturing processes, allergen quantification (methodologies and references), national regulatory differences, clinical practice, and labeling shows that the comparison of AIT products based solely on major allergen amounts is not rational and, in fact, impossible. Moreover, when rating the information given for a specific product, it is necessary to take into account further inherent characteristics of products and their application in clinical practice, such as the state of extract modification, addition of adjuvant or adjuvant system, route of administration (sublingual/ subcutaneous), and cumulative dose as per posology (including the volume per administration). Finally, only convincing clinical data can serve as the basis for product-specific evaluation and cross-product comparability of individual products

    Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation

    Get PDF
    BACKGROUND: Preclinical studies and early clinical trials have shown that targeting cancer neoantigens is a promising approach towards the development of personalized cancer immunotherapies. DNA vaccines can be rapidly and efficiently manufactured and can integrate multiple neoantigens simultaneously. We therefore sought to optimize the design of polyepitope DNA vaccines and test optimized polyepitope neoantigen DNA vaccines in preclinical models and in clinical translation. METHODS: We developed and optimized a DNA vaccine platform to target multiple neoantigens. The polyepitope DNA vaccine platform was first optimized using model antigens in vitro and in vivo. We then identified neoantigens in preclinical breast cancer models through genome sequencing and in silico neoantigen prediction pipelines. Optimized polyepitope neoantigen DNA vaccines specific for the murine breast tumor E0771 and 4T1 were designed and their immunogenicity was tested in vivo. We also tested an optimized polyepitope neoantigen DNA vaccine in a patient with metastatic pancreatic neuroendocrine tumor. RESULTS: Our data support an optimized polyepitope neoantigen DNA vaccine design encoding long (≥20-mer) epitopes with a mutant form of ubiquitin (Ub CONCLUSIONS: We have developed and optimized a novel polyepitope neoantigen DNA vaccine platform that can target multiple neoantigens and induce antitumor immune responses in preclinical models and neoantigen-specific responses in clinical translation

    LRCH Proteins: A Novel Family of Cytoskeletal Regulators

    Get PDF
    Background: Comparative genomics has revealed an unexpected level of conservation for gene products across the evolution of animal species. However, the molecular function of only a few proteins has been investigated experimentally, and the role of many animal proteins still remains unknown. Here we report the characterization of a novel family of evolutionary conserved proteins, which display specific features of cytoskeletal scaffolding proteins, referred to as LRCHs. Principal Findings: Taking advantage of the existence of a single LRCH gene in flies, dLRCH, we explored its function in cultured cells, and show that dLRCH act to stabilize the cell cortex during cell division. dLRCH depletion leads to ectopic cortical blebs and alters positioning of the mitotic spindle. We further examined the consequences of dLRCH deletion throughout development and adult life. Although dLRCH is not essential for cell division in vivo, flies lacking dLRCH display a reduced fertility and fitness, particularly when raised at extreme temperatures. Conclusion/Significance: These results support the idea that some cytoskeletal regulators are important to buffer environmental variations and ensure the proper execution of basic cellular processes, such as the control of cell shape

    Low pH immobilizes and kills human leukocytes and prevents transmission of cell-associated HIV in a mouse model

    Get PDF
    BACKGROUND: Both cell-associated and cell-free HIV virions are present in semen and cervical secretions of HIV-infected individuals. Thus, topical microbicides may need to inactivate both cell-associated and cell-free HIV to prevent sexual transmission of HIV/AIDS. To determine if the mild acidity of the healthy vagina and acid buffering microbicides would prevent transmission by HIV-infected leukocytes, we measured the effect of pH on leukocyte motility, viability and intracellular pH and tested the ability of an acidic buffering microbicide (BufferGel(®)) to prevent the transmission of cell-associated HIV in a HuPBL-SCID mouse model. METHODS: Human lymphocyte, monocyte, and macrophage motilities were measured as a function of time and pH using various acidifying agents. Lymphocyte and macrophage motilities were measured using video microscopy. Monocyte motility was measured using video microscopy and chemotactic chambers. Peripheral blood mononuclear cell (PBMC) viability and intracellular pH were determined as a function of time and pH using fluorescent dyes. HuPBL-SCID mice were pretreated with BufferGel, saline, or a control gel and challenged with HIV-1-infected human PBMCs. RESULTS: Progressive motility was completely abolished in all cell types between pH 5.5 and 6.0. Concomitantly, at and below pH 5.5, the intracellular pH of PBMCs dropped precipitously to match the extracellular medium and did not recover. After acidification with hydrochloric acid to pH 4.5 for 60 min, although completely immotile, 58% of PBMCs excluded ethidium homodimer-1 (dead-cell dye). In contrast, when acidified to this pH with BufferGel, a microbicide designed to maintain vaginal acidity in the presence of semen, only 4% excluded dye at 10 min and none excluded dye after 30 min. BufferGel significantly reduced transmission of HIV-1 in HuPBL-SCID mice (1 of 12 infected) compared to saline (12 of 12 infected) and a control gel (5 of 7 infected). CONCLUSION: These results suggest that physiologic or microbicide-induced acid immobilization and killing of infected white blood cells may be effective in preventing sexual transmission of cell-associated HIV
    corecore