23 research outputs found

    Microscale Fragmentation and Small-Angle Scattering from Mass Fractals

    Get PDF
    Using the small-angle scattering method, we calculate here the mono- and polydisperse structure factor from an idealized fragmentation model based on the concept of renormalization. The system consists of a large number of fractal microobjects which are randomly oriented and whose positions are uncorrelated. It is shown that, in the fractal region, the monodisperse form factor is characterized by a generalized power-law decay (i.e., a succession of maxima and minima superimposed on a simple power-law decay) and whose scattering exponent coincides with the fractal dimension of the scatterer. The present analysis of the scattering structure factor allows us to obtain the number of fragments resulted at a given iteration. The results could be used to obtain additional structural information about systems obtained through microscale fragmentation processes

    The scattering from generalized Cantor fractals

    Full text link
    We consider a fractal with a variable fractal dimension, which is a generalization of the well known triadic Cantor set. In contrast with the usual Cantor set, the fractal dimension is controlled using a scaling factor, and can vary from zero to one in one dimension and from zero to three in three dimensions. The intensity profile of small-angle scattering from the generalized Cantor fractal in three dimensions is calculated. The system is generated by a set of iterative rules, each iteration corresponding to a certain fractal generation. Small-angle scattering is considered from monodispersive sets, which are randomly oriented and placed. The scattering intensities represent minima and maxima superimposed on a power law decay, with the exponent equal to the fractal dimension of the scatterer, but the minima and maxima are damped with increasing polydispersity of the fractal sets. It is shown that for a finite generation of the fractal, the exponent changes at sufficiently large wave vectors from the fractal dimension to four, the value given by the usual Porod law. It is shown that the number of particles of which the fractal is composed can be estimated from the value of the boundary between the fractal and Porod regions. The radius of gyration of the fractal is calculated analytically.Comment: 8 pages, 4 figures, accepted for publication in J. Appl. Crys

    Small-Angle Scattering from Nanoscale Fat Fractals

    No full text
    Abstract Small-angle scattering (of neutrons, x-ray, or light; SAS) is considered to describe the structural characteristics of deterministic nanoscale fat fractals. We show that in the case of a polydisperse fractal system, with equal probability for any orientation, one obtains the fractal dimensions and scaling factors at each structural level. This is in agreement with general results deduced in the context of small-angle scattering analysis of a system of randomly oriented, non-interacting, nano-/micro-fractals. We apply our results to a two-dimensional fat Cantor-like fractal, calculating analytic expressions for the scattering intensities and structure factors. We explain how the structural properties can be computed from experimental data and show their correlation to the variation of the scaling factor with the iteration number. The model can be used to interpret recorded experimental SAS data in the framework of fat fractals and can reveal structural properties of materials characterized by a regular law of changing of the fractal dimensions. It can describe successions of power-law decays, with arbitrary decreasing values of the scattering exponents, and interleaved by regions of constant intensity
    corecore