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Using the small-angle scattering method, we calculate here the mono- and polydisperse structure factor from an idealized
fragmentationmodel based on the concept of renormalization.The system consists of a large number of fractal microobjects which
are randomly oriented and whose positions are uncorrelated. It is shown that, in the fractal region, the monodisperse form factor
is characterized by a generalized power-law decay (i.e., a succession of maxima and minima superimposed on a simple power-law
decay) and whose scattering exponent coincides with the fractal dimension of the scatterer. The present analysis of the scattering
structure factor allows us to obtain the number of fragments resulted at a given iteration. The results could be used to obtain
additional structural information about systems obtained through microscale fragmentation processes.

1. Introduction

The number of fragments (such as those resulted from rocks
weathering and explosions or produced by earth’s crust) as
a function of their sizes over a wide range of scales usually
can be described by a fractal distribution [1–3], which is
responsible for various physical properties, such as hydraulic
conductivity ormoisture characteristics in soils [4]. Although
a quantification of these processes using the renormalization
group approach has been suggested in [5, 6], an important
issue concerns the distribution of fragments at microscales
obtained by various methods such us in ultrasonic fragmen-
tation using optoacoustic lens [7].

Small-angle scattering (SAS; neutrons, X-ray, light) [8, 9]
is one of the most important techniques for investigating the
microstructure of various types of systems which addresses
the issue of size distribution, including the smallest and
largest components. It yields the differential elastic cross
section per unit solid angle as a function of the momentum
transfer.Themain advantage consists in its ability to differen-
tiate betweenmass and surface fractals [10, 11], and it has been
successfully used in studying the property of self-similarity
across nano- and microscales [2], such as various types

of membranes [12–15], cements [16], semiconductors [17],
magnetic structures [18, 19], or biological structures [20–22].
Thus the concept of fractal geometry coupled with SAS tech-
nique can give new insights concerning the structural char-
acteristics of such complex systems [10, 11, 23–30]. One of the
main parameters which can be obtained is the fractal dimen-
sion 𝐷

𝑚
[1]. For a mass fractal it is given by the scattering

exponent of the power-law SAS intensity 𝐼(𝑞) ∝ 𝑞
−𝐷
𝑚 where

0 < 𝐷
𝑚

< 3. For deterministic fractals, additional informa-
tion can be obtained such as scaling factor (from the period
of 𝐼(𝑞)𝑞𝐷𝑚 in the logarithmic scale), the number of fractal
iteration𝑚 (which equals the number of periods of function
𝐼(𝑞) ∝ 𝑞

−𝐷
𝑚), and the total number𝑁

𝑚
of structural units of

which the fractal is composed.
In this paper, we develop a theoretical model based on

renormalization group approach which could describe vari-
ous microscale fragmentation processes.We calculate analyt-
ically the mono- and polydisperse structure factor and show
how to obtain the main structural parameter such as the
fractal dimension and the number of fragments at a given iter-
ation and showhow to estimate the smallest and largest radius
of the fractal from SAS data.
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Figure 1: A two-dimensional projection of the fragmentation
model. Note that at a given iteration all the fragments have the same
size. The probability that the cube with edge length 𝑙0 (𝑚 = 0;
initiator) will be fragmented into 27 cubes of edge length 𝑙1 is 𝑓.

2. Fragmentation Model:
Construction and Properties

The construction process of three-dimensional mass fractals
is similar to that of mass generalized Cantor and Vicsek
fractals (GCF and GVF) [26] in the sense that one follows a
top-down approach in which an initial structure is repeatedly
divided (by a single scaling factor) into a set of smaller
structures of the same type according to a given rule which is
changed randomly from one iteration to the next one. Thus,
we first consider a cube of edge length 𝑙0 (𝑚 = 0; initiator) and
in the first iteration (𝑚 = 1) the number of cubes which are
kept is related to the probability 𝑓 in which the initiator will
be fragmented into 27 cubes of edge length 𝑙1 = 𝑙0/3. Figure 1
illustrates the construction of a generic model of fragmen-
tation, where the sizes of remaining cubes at 𝑚th iteration
are given by

𝑙
𝑚
=

𝑙
0

3𝑚
. (1)

At𝑚th iteration the total number of particles will be given by

𝑁
𝑚
= (1−𝑓) (1+ 27𝑓+ (27𝑓)2 + ⋅ ⋅ ⋅ + (27𝑓)𝑚) , (2)

and in a good approximation (𝑚 ≫ 1 and 27𝑓 > 1) it can be
shown that the fractal dimension can be written as [5]

𝐷
𝑚
= 3

log (27𝑓)
log 27

, (3)

with 1/27 < 𝑓 < 1, and thus 0 < 𝐷
𝑚
< 3. Figure 2 shows the

variation of the fractal dimension 𝐷
𝑚
with probability 𝑓 in

which the initiator will be fragmented into 27 cubes of edge
length 𝑙1 = 𝑙0/3.
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Figure 2: Dependence of the fractal dimension𝐷
𝑚
of the probabil-

ity 𝑓 from (3).

3. Theory

Here, we restrict ourselves to two-phase systems, which are
composed of homogeneous units of mass density 𝜌

𝑚
. The

units are immersed into a solid matrix of pore density 𝜌
𝑝
.

Then [8, 9] we can consider the system as if the units were
frozen in a vacuum and had the density Δ𝜌 = 𝜌

𝑚
− 𝜌
𝑝
. The

density Δ𝜌 is called scattering contrast, and thus the scatter-
ing intensity is given by

𝐼 (𝑞) = 𝑛
Δ𝜌



2
𝑉

2
⟨|𝐹 (q)|2⟩ , (4)

where 𝑛 is the fractal concentration, 𝑉 is the volume of each
fractal, and 𝐹(q) is the normalized form factor

𝐹 (q) = (
1
𝑉
)∫
𝑉

𝑒
−𝑖q⋅rdr, (5)

obeying 𝐹(0) = 1. The brackets ⟨⋅ ⋅ ⋅ ⟩ stand for the ensemble
averaging over all orientations of q. Once a deterministic
fractal is composed of the same objects, say,𝑁 cubes of edge
length 𝑙, then

𝐹 (q) =
𝜌q𝐹0 (𝑞𝑙)

𝑁
, (6)

with 𝜌q = ∑
𝑗
𝑒
−𝑖q⋅r
𝑗 being the Fourier component of the

density of the cubes, and r
𝑗
are the center-of-mass positions of

cubes. Here, the cube form factor of unit edge length is given
by [8]

𝐹0 (t) =
sin (𝑡
𝑥
/2)

𝑡
𝑥
/2

sin (𝑡
𝑦
/2)

𝑡
𝑦
/2

sin (𝑡
𝑧
/2)

𝑡
𝑧
/2

. (7)

Therefore, the scattering intensity becomes

𝐼 (𝑞) =
𝐼 (0) 𝑆 (𝑞) 𝐹0 (𝑞𝑙)



2

𝑁
, (8)
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Figure 3: The monodisperse structure factor for the fragmentation
model at various values of probability 𝑓 shows a superposition of
maxima and minima on a simple power-law decay in the fractal
region.The curves are shifted down vertically for clarity with a factor
of 10−2 (red; middle curve) and, respectively, with 10−4 (green; lower
curve). Iteration number is𝑚 = 6.

with 𝐼(0) = 𝑛|Δ𝜌|
2
𝑉

2 and

𝑆 (𝑞) ≡

⟨𝜌q𝜌−q⟩

𝑁

(9)

being the structure factor, and it is intimately connected
to the pair distribution function. In the fractal region the
form factor tends to one, and this implies that the scattering
intensity is proportional to the structure factor in the fractal
region.

The monodisperse form factor at 𝑚th iteration can be
written as [26]

𝐹
𝑚
(q) = 𝐹0 (𝑞𝑙𝑚)

𝑚

∏

𝑖=1
𝐺
𝑖
(q) , (10)

with 𝑚 = 1, 2, . . . and 𝐺(q) being the generative function of
the fractal and it specifies the positions of the scattering cubes
inside the fractal. Thus, the scattering intensity becomes [26]

𝐼
𝑚
(𝑞)

𝐼
𝑚
(0)

= ⟨
𝐹𝑚 (q)



2
⟩ . (11)

4. Results and Discussion

For well-known systems such as Cantor sets or Vicsek fractals
𝐺
𝑖
(q) has known analytical expressions [26]. Here, we use a

random distribution of cubes at each iteration for writing the
generative function.

The monodisperse structure factor for various values of
𝑓 is shown in Figure 3. It is characterized by the presence of
three main regions on a double logarithmic scale: at low 𝑞

(𝑞 ≲ 1/𝑙0) a plateau (Guinier region) which gives information
about the overall size of the fractal, a fractal (generalized
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Figure 4: The polydisperse structure factor for the fragmentation
model at various values of probability 𝑓 shows a simple power-law
decay in the fractal region with the scattering exponent equal to the
fractal dimension of the fractal. The horizontal lines indicate the
asymptotic values of the structure factor (see (12)). Iteration number
is𝑚 = 6 and relative variance 𝜎

𝑟
= 0.6.

power law-decay) region at 1/𝑙0 ≲ 𝑞 ≲ 1/𝑙
𝑚
, and an

asymptotic region

𝑆 (𝑞) ≃
1
𝑁
𝑚

, (12)

at high 𝑞 (1/𝑙
𝑚

≲ 𝑞) which gives information about the
number of fragments in the fractal (see also Figure 4).

The value of the fractal dimension can be obtained by
considering the polydispersity in size of the fractals. Here, we
use a distribution function 𝐷

𝑁
(𝑙) of sizes in such a way that

𝐷
𝑁
(𝑙)d𝑙 gives the probability of finding a fractal whose size

falls within (𝑙, 𝑙 + d𝑙). We consider a log-normal distribution

𝐷
𝑁
(𝑙) =

1
𝜎𝑙 (2𝜋)1/2

exp(−

[ln (𝑙/𝑙0 + 𝜎
2
/2)]

2

2𝜎2 ) , (13)

where 𝜎 = [ln(1 + 𝜎
2
𝑟
)]
1/2. The mean length and its relative

variance are 𝜇 ≡ ⟨𝑙⟩
𝐷
and 𝜎

𝑟
≡ (⟨𝑙⟩

2
𝐷

− 𝑙
2
0)

1/2
/𝜇 where

⟨⋅ ⋅ ⋅ ⟩
𝐷

= ∫
∞

0 ⋅ ⋅ ⋅ 𝐷
𝑁
(𝑙)d𝑙. Thus, the polydisperse structure

factor is given by [26]

𝐼
𝑚
(𝑞) = 𝑛

Δ𝜌


2
∫

∞

0
⟨
𝐹𝑚 (q)



2
⟩𝑉

2
𝑚
𝐷
𝑁
(𝑙) d𝑙, (14)

where 𝑉
𝑚
is the total volume at the𝑚th iteration.

Figure 4 shows the polydisperse structure obtained from
Figure 3 together with (14). As expected, the influence of
polydispersity is to smooth the scattering curves, and to
preserve the scattering exponent in the fractal region. At high
𝑞 the structure factor is proportional to 1/𝑁

𝑚
, according to

(12). Note that the value of fractal dimension is in agreement
with (3).
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The results show that in an ideal SAS experiment (which
shows the presence of Guinier, fractal, and Porod regions) the
overall size and the smallest size in the fractal can be obtained
from both the mono- and polydisperse intensity, through the
position of the crossover between Guinier and fractal region,
and, respectively, between fractal and Porod region.However,
a reliable estimation of the fractal dimension can be obtained
only in the polydisperse case.

An important difference between the model developed
here and those based on exact self-similar fractals is that
for the latter models we have a periodic distribution for the
minima of monodisperse intensity [26, 29, 31], which allows
us to obtain the number of fractal iteration, as well as the frac-
tal scaling factor 𝛽

𝑠
from the log-periodicity of the quantity

𝐼(𝑞)𝑞
𝐷
𝑚 versus 𝑞 in the fractal region. For the former model,

the choice of the scattering units (here, cubes) according to a
probability𝑓 leads to an asymmetric distributionwith respect
to the origin of the initiator. This difference is reflected in the
polydisperse intensity by oscillations of various amplitudes
(see Figure 4) around the simple power-law decay 𝐼(𝑞) ∝

𝑞
−𝐷
𝑚 . However, the asymptote of the fractal structure factor

gives the number of particles 𝑁
𝑚
inside the fractal and this

can be used in (2), together with probability 𝑓 from (3) (with
𝐷
𝑚
being known from the exponent of the power-law decay),

to determine the iteration number 𝑚 of the fractal. Thus, by
knowing 𝑚, 𝑁

𝑚
, and 𝐷

𝑚
and using the relation [26] 𝑁

𝑚
=

(1/𝛽
𝑠
)
𝑚𝐷
𝑚 , we can then still recover the scaling factor.

Depending on the type and availability of the sample
and on the experimental setup, various approaches could be
followed in order to extract structural information. Thus, if
the structure factor given by (12) ismultiplied by a form factor
corresponding to the basic scattering unit, then one obtains
the SAS intensity in which the asymptotic region of the
structure factor is replaced by a Porod decay (𝐼(𝑞) ∝ 𝑞

−4) and
thus additional information can be obtained. For example,
in [32], from the calculated small-angle X-ray scattering
intensity of a fragmentation, fractal silica nanoagglomerates,
the fractal structure, and aggregation number have been
obtained by using the well-known Beaucage model [33], and
the specific surface area has been obtainedwith the help of the
integral parameter 𝑄 and the Porod constant [9].

5. Conclusions

We have developed an idealized statistical self-similar fractal
model for describing fragmentation processes based on 3D
fractal and have used the SAS technique to characterize the
microstructural properties of such fragments. The model is
based on the concept of renormalization, and the suggested
approach has important advantages since SAS is a nonde-
structive technique, the obtained information is averaged
over a macroscopic volume, and the model features allow us
to obtain additional information about the fractal fragments,
such as the number of structural units of which the fractal is
composed, the scaling factor or the fractal iteration number.

We have calculated the monodisperse and polydisperse
structure factor and have shown how to obtain the smallest
and largest sizes inside the fractal, from the position of

the crossover between Guinier and fractal region, and,
respectively, between fractal and Porod region. We have
shown that the slope of SAS intensity is in agreement with
the fractal dimension of the fractal, as given by (3).

Themodel can be used in understanding various physical
properties such as hydraulic conductivity or moisture char-
acteristics for systems obtained through fragmentation and it
can be easily extended to describe more complex structures,
such as by keeping fragments of different sizes obtained at
various iterations (surface fractals), by taking into account
multiple scaling factors at a given iteration (multifractals),
changing the scaling factors with the iteration number
according to a certain rule (fat fractals) or a combination of
them.
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