36 research outputs found

    Glycosaminoglycan, collagen, and glycosidase changes in human osteoblasts treated with interleukin 1, and osteodystrophy

    No full text
    Normal bone homeostasis involves a balance between osteoblast and osteoclast action, regulated by hormones and cytokine stimuli. Hemodialysis patients appear to have increased production of interleukin-1 (IL-1), interleukin-6 (IL-6) and glycosaminoglycans (GAG) in serum. IL-1 plays a role in the synthesis, degradation and degree of sulphatation of ECM components such as glycosaminoglycans. Also, continuous changes in the ECM involve enzymes such as \u3b2-N-acetyl-d-glucosaminidase (\u3b2-NAG) and \u3b2-d-glucuronidase (\u3b2-GLU) which act on different GAG classes and collagen fibers. We examined the effects of IL-1 on ECM synthesis and the related enzymes in human uremic osteoblast cultures. We also measured the levels of IL-1\u3b2, and IL-6 and alkaline phosphatase activity. In biopsies of uremic bone there was less ECM deposition than resorption associated with changes in osteoblast morphology. In vitro osteoblast proliferation was higher (P 64 0.01), and extracellular GAG lower (P 64 0.01) than in controls. The enzyme \u3b2-NAG was high (P 64 0.05) but there were no noteworthy changes in \u3b2-GLU. ELISA of the medium indicated spontaneous production of IL-1\u3b2 and IL-6, which significantly increased after IL-1 treatment compared to controls. IL-1 reduced alkaline phosphatase activity (P 64 0.01) in uremic osteoblast cultures. IL-1 acts on osteoblasts with decreases in GAG synthesis and alkaline phosphatase activity, while \u3b2-NAG increases. This lead to a reduction in the organic component in ECM and its mineralization, and to changes in the regulation of cytokine activity by GAG. The enzymatic breakdown might be facilitated by metabolic acidosis and failed osteoblast differentiation; these factors could be correlated with different degrees of osteodystrophy

    Patterns of some extracellular matrix gene expression are similar in cells from cleft lip-palate patients and in human palatal fibroblasts exposed to diazepam in culture.

    No full text
    Prenatal exposure to diazepam, a prototype sedative drug that belongs to Benzodiazepines, can lead to orofacial clefting in human newborns. By using real-time PCR, in the present study we investigated whether diazepam elicits gene expression alterations in extracellular matrix (ECM) components, growth factors and gamma-aminobutyric acid receptor (GABRB3), implicated in the coordinate regulation of palate development. Palate fibroblasts were treated with diazepam (Dz-N fibroblasts) and compared to cleft lip-palate (CLP) fibroblasts obtained from patients with no known exposure to diazepam or other teratogens. Untreated fibroblasts from non-CLP patients were used as control. The results showed significant convergences in gene expression pattern of collagens, fibromodulin, vitronectin, tenascin C, integrins and metalloprotease MMP13 between Dz-N and CLP fibroblasts. Among the growth factors, constitutive Fibroblast Growth Factor 2 (FGF2) was greatly enhanced in Dz-N and CLP fibroblasts and associated with a higher reduction of FGF receptor. Transforming Growth Factor beta 3 (TGFbeta(3)) resulted up-regulated in CLP fibroblasts and decreased in Dz-N fibroblasts. We found phenotypic differences exhibited by Dz-N and CLP fibroblasts in GABRB3 gene regulation, so further studies are necessary to determine whether GABAergic system could be involved in the development of diazepam mediated CLP phenotype. Taken together the results elucidate the molecular mechanisms underlying possible toxicology effects induced by diazepam. Counselling of women on the safety of diazepam exposure is clinically important, also for the forensic consequences

    Desmoid and fibroma tumors differently respond to TGF\u3b21 stimulus and ECM macromolecule accumulation

    No full text
    Desmoid and fibroma tumours are characterized by cell proliferation, glycosaminoglycan and collagen fibre accumulation, high levels of transforming growth factor beta(1) (TGFbeta(1)) and different patterns of tissue infiltration. TGFbeta(1) is related to extracellular matrix (ECM) composition which, in turn, regulates cell functions and cell migration. In this study we report changes in cell proliferation, glycosaminoglycan (GAG) and collagen synthesis, TGFbeta(1) mRNA expression and fibronectin levels in normal, desmoid and fibroma fibroblast cultures before and after TGFbeta(1) stimulation. Our data showed cell proliferation, GAG and collagen synthesis, transforming growth factor beta(1) mRNA expression and fibronectin levels were significantly higher in desmoid than in fibroma cultures. TGFbeta(1) treatment had no effect on cell proliferation, but increased TGFbeta(1) mRNA expression, GAG, fibronectin and collagen synthesis in desmoid and fibroma fibroblasts. Its effects were more marked in desmoid cells. Fibronectin favours cell migration, while changes in GAG composition alter cell behaviour and ECM organization. In conclusion our data suggest that the different patterns of infiltration in desmoid and fibroma tumours are due to changes in ECM components and cell-ECM interactions which can be ascribed to altered TGFbeta(1) mRNA expression and TGFbeta(1) activity

    Patterns of some extracellular matrix gene expression are similar in cells from cleft lip-palate patients and in human palatal fibroblasts exposed to diazepam in culture

    No full text
    Prenatal exposure to diazepam, a prototype sedative drug that belongs to Benzodiazepines, can lead to orofacial clefting in human newborns. By using real-time PCR, in the present study we investigated whether diazepam elicits gene expression alterations in extracellular matrix (ECM) components, growth factors and gamma-aminobutyric acid receptor (GABRB3), implicated in the coordinate regulation of palate development. Palate fibroblasts were treated with diazepam (Dz-N fibroblasts) and compared to cleft lip-palate (CLP) fibroblasts obtained from patients with no known exposure to diazepam or other teratogens. Untreated fibroblasts from non-CLP patients were used as control. The results showed significant convergences in gene expression pattern of collagens, fibromodulin, vitronectin, tenascin C, integrins and metalloprotease MMP13 between Dz-N and CLP fibroblasts. Among the growth factors, constitutive Fibroblast Growth Factor 2 (FGF2) was greatly enhanced in Dz-N and CLP fibroblasts and associated with a higher reduction of FGF receptor. Transforming Growth Factor beta 3 (TGFbeta(3)) resulted up-regulated in CLP fibroblasts and decreased in Dz-N fibroblasts. We found phenotypic differences exhibited by Dz-N and CLP fibroblasts in GABRB3 gene regulation, so further studies are necessary to determine whether GABAergic system could be involved in the development of diazepam mediated CLP phenotype. Taken together the results elucidate the molecular mechanisms underlying possible toxicology effects induced by diazepam. Counselling of women on the safety of diazepam exposure is clinically important, also for the forensic consequences

    Toremifene decreases type I, type II and increases type III receptors in desmoid and fibroma and inhibits TGFbeta1 binding in desmoid fibroblasts

    No full text
    Tissue infiltration is different in desmoid and fibroma tumours. Both produce high levels of transforming growth factor beta1 (TGFbeta1), which is related to extracellular matrix (ECM) accumulation which in turn regulates cell function and cell migration. Interactions between collagen, proteoglycans and cell surface fibronectin are involved in the assembly and functions of the ECM. As toremifene inhibits collagen and TGFbeta1 synthesis, we tested it in normal, desmoid and fibroma fibroblasts. We will report the changes in glycosaminoglycan (GAG) and collagen synthesis, TGFbeta1 activity, fibronectin mRNA expression and TGFbeta1 receptors after toremifene treatment in normal, fibroma and desmoid fibroblasts. We evaluated GAG and collagen synthesis with 3H-glucosamine and 3H-proline incorporation, TGFbeta1 activity with the ELISA method, TGFbeta1 receptor affinity with 125I-TGFbeta1 binding and total RNA with Northern blot analysis. GAG and collagen synthesis, TGFbeta1 activity and fibronectin levels were higher in fibroma and desmoid than normal fibroblasts. The increase was greater in desmoid than fibroma tumour cells. Toremifene treatment reduced GAG and collagen synthesis, TGFbeta1 activity and fibronectin levels in all cell cultures. The percentage reduction in GAG was similar in all cultures; the reduction in collagen synthesis and TGFbeta1 activity was the highest in desmoid fibroblasts. TGFbeta1 receptors were higher in fibroma and desmoid cells than controls. Toremifene reduced TGFbeta1 receptors only in desmoid fibroblasts, with no effect on the changes in type I, II, and III receptors. Our data show that toremifene modifies the ECM components that regulate cytokine activity and cell migration. The reduction in receptor number only in desmoid cells suggests that toremifene may reduce TGFbeta1's affinity for its receptors. Synthesis of a substance regulating protein kinase activity, which is directly involved in the link between TGFbeta1 and its receptors, cannot be excluded

    Human cleft lip and palate fibroblasts and normal nicotine-treated fibroblasts show altered in vitro expressions of genes related to molecular signaling pathways and extracellular matrix metabolism.

    No full text
    Nonsyndromic cleft lip with or without cleft palate (CLP) is a frequent craniofacial malformation caused by both genetic and environmental factors. Maternal smoking during pregnancy is a known risk factor, due to the teratogenic role of nicotine. To assess and compare the impact of CLP and nicotine, we studied the quantitative expression of genes involved in signaling pathways and extracellular matrix (ECM) metabolism in human normal nicotine-treated (NicN) and CLP fibroblasts compared to normal control (CTRL) cells. Palatal fibroblast cultures from seven CLP children and seven age-matched CTRL subjects were established and subconfluent cells incubated for 24 h without (CTRL and CLP fibroblasts) or with (NicN fibroblasts) 0.6 mM nicotine. Gene expressions were analyzed by real-time quantitative PCR. For the first time, a regulated cholinergic signaling in our human fibroblasts in vitro was demonstrated. Members of TGF-beta, retinoic acid (RA), and GABA-ergic signaling systems were also differently regulated. Among the ECM genes, fibronectin, syndecan, integrin alpha2, and MMP13 genes were concordantly modulated, while integrin beta5, and decorin genes were discordantly modulated. Interestingly, nicotine treatment regulated gene expressions of CD44 and CLPTM1, two candidate genes for CLP. Our findings show a positive association between nicotine treatment and CLP phenotype. Results suggest that nicotine deranges normal palate development, which might contribute to the development of a CLP malformative phenotype, through the impairment of some important signaling systems and ECM composition

    Human cleft lip and palate fibroblasts and normal nicotine-treated fibroblasts show altered in vitro expressions of genes related to molecular signaling pathways and extracellular matrix metabolism

    No full text
    Nonsyndromic cleft lip with or without cleft palate (CLP) is a frequent craniofacial malformation caused by both genetic and environmental factors. Maternal smoking during pregnancy is a known risk factor, due to the teratogenic role of nicotine. To assess and compare the impact of CLP and nicotine, we studied the quantitative expression of genes involved in signaling pathways and extracellular matrix (ECM) metabolism in human normal nicotine-treated (NicN) and CLP fibroblasts compared to normal control (CTRL) cells. Palatal fibroblast cultures from seven CLP children and seven age-matched CTRL subjects were established and subconfluent cells incubated for 24 h without (CTRL and CLP fibroblasts) or with (NicN fibroblasts) 0.6 mM nicotine. Gene expressions were analyzed by real-time quantitative PCR. For the first time, a regulated cholinergic signaling in our human fibroblasts in vitro was demonstrated. Members of TGF-beta, retinoic acid (RA), and GABA-ergic signaling systems were also differently regulated. Among the ECM genes, fibronectin, syndecan, integrin alpha2, and MMP13 genes were concordantly modulated, while integrin beta5, and decorin genes were discordantly modulated. Interestingly, nicotine treatment regulated gene expressions of CD44 and CLPTM1, two candidate genes for CLP. Our findings show a positive association between nicotine treatment and CLP phenotype. Results suggest that nicotine deranges normal palate development, which might contribute to the development of a CLP malformative phenotype, through the impairment of some important signaling systems and ECM composition

    Retinoic acid, GABA-ergic, and TGF-β signaling systems are involved in human cleft palate fibroblast phenotype

    No full text
    During embryogenesis, a complex interplay between extracellular matrix (ECM) molecules, regulatory molecules, and growth factors mediates morphogenetic processes involved in palatogenesis. Transforming growth factor-beta (TGF-beta), retinoic acid (RA), and gamma-aminobutyric acid (GABA)ergic signaling systems are also potentially involved. Using [3H]glucosamine and [35S]methionine incorporation, anion exchange chromatography, semiquantitative radioactive RT-PCR, and a TGF-beta binding assay, we aimed to verify the presence of phenotypic differences between primary cultures of secondary palate (SP) fibroblasts from 2-year-old subjects with familial nonsyndromic cleft lip and/or palate (CLP-SP fibroblasts) and age-matched normal SP (N-SP) fibroblasts. The effects of RA--which, at pharmacologic doses, induces cleft palate in newborns of many species--were also studied. We found an altered ECM production in CLP-SP fibroblasts that synthesized and secreted more glycosaminoglycans (GAGs) and fibronectin (FN) compared with N-SP cells. In CLP-SP cells, TGF-beta3 mRNA expression and TGF-beta receptor number were higher and RA receptor-alpha (RARA) gene expression was increased. Moreover, we demonstrated for the first time that GABA receptor (GABRB3) mRNA expression was upregulated in human CLP-SP fibroblasts. In N-SP and CLP-SP fibroblasts, RA decreased GAG and FN secretion and increased TGF-beta3 mRNA expression but reduced the number of TGF-beta receptors. TGF-beta receptor type I mRNA expression was decreased, TGF-beta receptor type II was increased, and TGF-beta receptor type III was not affected. RA treatment increased RARA gene expression in both cell populations but upregulated GABRB3 mRNA expression only in N-SP cells. These results show that CLP-SP fibroblasts compared with N-SP fibroblasts exhibit an abnormal phenotype in vitro and respond differently to RA treatment, and suggest that altered crosstalk between RA, GABAergic, and TGF-beta signaling systems could be involved in human cleft palate fibroblast phenotype
    corecore