22,673 research outputs found

    Dynamic magnetic response of infinite arrays of ferromagnetic particles

    Get PDF
    Recently developed techniques to find the eigenmodes of a ferromagnetic particle of arbitrary shape, as well as the absorption in the presence of an inhomogeneous radio-frequency field, are extended to treat infinite lattices of such particles. The method is applied to analyze the results of recent FMR experiments, and yields substantially good agreement between theory and experiment

    Is U3Ni3Sn4 best described as near a quantum critical point?

    Full text link
    Although most known non-Fermi liquid (NFL) materials are structurally or chemically disordered, the role of this disorder remains unclear. In particular, very few systems have been discovered that may be stoichiometric and well ordered. To test whether U3Ni3Sn4 belongs in this latter class, we present measurements of the x-ray absorption fine structure (XAFS) of polycrystalline and single-crystal U3Ni3Sn4 samples that are consistent with no measurable local structural disorder. We also present temperature-dependent specific heat data in applied magnetic fields as high as 8 T that show features that are inconsistent with the antiferromagnetic Griffiths' phase model, but do support the conclusion that a Fermi liquid/NFL crossover temperature increases with applied field. These results are inconsistent with theoretical explanations that require strong disorder effects, but do support the view that U3Ni3Sn4 is a stoichiometric, ordered material that exhibits NFL behavior, and is best described as being near an antiferromagnetic quantum critical point.Comment: 9 pages, 8 figures, in press with PR

    A Law Enforcement Program for the State of Illinois

    Get PDF

    Law Enforcement Program for the State of Illinois

    Get PDF

    Law Enforcement Program for the State of Illinois

    Get PDF

    Belief heterogeneity and survival in incomplete markets

    Get PDF
    In complete markets economies (Sandroni [16]), or in economies with Pareto optimal outcomes (Blume and Easley [10]), the market selection hypothesis holds, as long as traders have identical discount factors. Traders who survive must have beliefs that merge with the truth. We show that in incomplete markets, regardless of traders’ discount factors, the market selects for a range of beliefs, at least some of which do not merge with the truth. We also show that impatient traders with incorrect beliefs can survive and that these incorrect beliefs impact prices. These beliefs may be chosen so that they are far from the truth

    Tuning electronic structures via epitaxial strain in Sr2IrO4 thin films

    Get PDF
    We have synthesized epitaxial Sr2IrO4 thin-films on various substrates and studied their electronic structures as a function of lattice-strains. Under tensile (compressive) strains, increased (decreased) Ir-O-Ir bond-angles are expected to result in increased (decreased) electronic bandwidths. However, we have observed that the two optical absorption peaks near 0.5 eV and 1.0 eV are shifted to higher (lower) energies under tensile (compressive) strains, indicating that the electronic-correlation energy is also affected by in-plane lattice-strains. The effective tuning of electronic structures under lattice-modification provides an important insight into the physics driven by the coexisting strong spin-orbit coupling and electronic correlation.Comment: 9 pages, 5 figures, 1 tabl

    Structure and Physical Properties of SrNiRu\u3csub\u3e5\u3c/sub\u3eO\u3csub\u3e11\u3c/sub\u3e Single Crystals: An \u3cem\u3eR\u3c/em\u3e-Type Ferrite Based on Ordered Kagome Nets

    Get PDF
    Single crystals of the R-type ferrite SrNiRu5O11 were grown from a chloride flux. The hexagonal crystal structure contains ruthenium located on distorted kagome nets. The low-temperature dc magnetic susceptibilities (χ⊥ and χ∥, perpendicular and parallel to the c axis, respectively) diverge as T−0.3, and do not exhibit any indication of long-range magnetic order down to 4.5 K. The electrical resistivity varies as T1.6 below 40 K, which is typical of non-Fermi liquids, and may originate from a competition between residual magnetic interactions among Ni2+ (S = 1) spins and geometrical frustration on the two-dimensional kagome lattice of Ru3+ (S = ½) spins. The transverse magnetoresistivity ρxy at constant temperature T = 5 K for current (J) -magnetic field (H) configurations, J⊥H ∥ c axis and J ∥ H⊥c axis, reveals no anomalous contribution, which is consistent with the absence of magnetic order. Fits of the specific heat data below 10 K require a dominant, but unusual electronic term of the form Cel = γT1.2, which is expected for massless Dirac fermion states in topological insulators, or spin-liquid phases
    corecore