22,673 research outputs found
Dynamic magnetic response of infinite arrays of ferromagnetic particles
Recently developed techniques to find the eigenmodes of a ferromagnetic
particle of arbitrary shape, as well as the absorption in the presence of an
inhomogeneous radio-frequency field, are extended to treat infinite lattices of
such particles. The method is applied to analyze the results of recent FMR
experiments, and yields substantially good agreement between theory and
experiment
Is U3Ni3Sn4 best described as near a quantum critical point?
Although most known non-Fermi liquid (NFL) materials are structurally or
chemically disordered, the role of this disorder remains unclear. In
particular, very few systems have been discovered that may be stoichiometric
and well ordered. To test whether U3Ni3Sn4 belongs in this latter class, we
present measurements of the x-ray absorption fine structure (XAFS) of
polycrystalline and single-crystal U3Ni3Sn4 samples that are consistent with no
measurable local structural disorder. We also present temperature-dependent
specific heat data in applied magnetic fields as high as 8 T that show features
that are inconsistent with the antiferromagnetic Griffiths' phase model, but do
support the conclusion that a Fermi liquid/NFL crossover temperature increases
with applied field. These results are inconsistent with theoretical
explanations that require strong disorder effects, but do support the view that
U3Ni3Sn4 is a stoichiometric, ordered material that exhibits NFL behavior, and
is best described as being near an antiferromagnetic quantum critical point.Comment: 9 pages, 8 figures, in press with PR
Belief heterogeneity and survival in incomplete markets
In complete markets economies (Sandroni [16]), or in economies with Pareto optimal outcomes (Blume and Easley [10]), the market selection hypothesis holds, as long as traders have identical discount factors. Traders who survive must have beliefs that merge with the truth. We show that in incomplete markets, regardless of traders’ discount factors, the market selects for a range of beliefs, at least some of which do not merge with the truth. We also show that impatient traders with incorrect beliefs can survive and that these incorrect beliefs impact prices. These beliefs may be chosen so that they are far from the truth
Tuning electronic structures via epitaxial strain in Sr2IrO4 thin films
We have synthesized epitaxial Sr2IrO4 thin-films on various substrates and
studied their electronic structures as a function of lattice-strains. Under
tensile (compressive) strains, increased (decreased) Ir-O-Ir bond-angles are
expected to result in increased (decreased) electronic bandwidths. However, we
have observed that the two optical absorption peaks near 0.5 eV and 1.0 eV are
shifted to higher (lower) energies under tensile (compressive) strains,
indicating that the electronic-correlation energy is also affected by in-plane
lattice-strains. The effective tuning of electronic structures under
lattice-modification provides an important insight into the physics driven by
the coexisting strong spin-orbit coupling and electronic correlation.Comment: 9 pages, 5 figures, 1 tabl
Structure and Physical Properties of SrNiRu\u3csub\u3e5\u3c/sub\u3eO\u3csub\u3e11\u3c/sub\u3e Single Crystals: An \u3cem\u3eR\u3c/em\u3e-Type Ferrite Based on Ordered Kagome Nets
Single crystals of the R-type ferrite SrNiRu5O11 were grown from a chloride flux. The hexagonal crystal structure contains ruthenium located on distorted kagome nets. The low-temperature dc magnetic susceptibilities (χ⊥ and χ∥, perpendicular and parallel to the c axis, respectively) diverge as T−0.3, and do not exhibit any indication of long-range magnetic order down to 4.5 K. The electrical resistivity varies as T1.6 below 40 K, which is typical of non-Fermi liquids, and may originate from a competition between residual magnetic interactions among Ni2+ (S = 1) spins and geometrical frustration on the two-dimensional kagome lattice of Ru3+ (S = ½) spins. The transverse magnetoresistivity ρxy at constant temperature T = 5 K for current (J) -magnetic field (H) configurations, J⊥H ∥ c axis and J ∥ H⊥c axis, reveals no anomalous contribution, which is consistent with the absence of magnetic order. Fits of the specific heat data below 10 K require a dominant, but unusual electronic term of the form Cel = γT1.2, which is expected for massless Dirac fermion states in topological insulators, or spin-liquid phases
- …