634 research outputs found

    Plasma wake inhibition at the collision of two laser pulses in an underdense plasma

    Get PDF
    An electron injector concept for laser-plasma accelerator was developed in ref [1] and [2] ; it relies on the use of counter-propagating ultrashort laser pulses. In [2], the scheme is as follows: the pump laser pulse generates a large amplitude laser wakefield (plasma wave). The counter-propagating injection pulse interferes with the pump laser pulse to generate a beatwave pattern. The ponderomotive force of the beatwave is able to inject plasma electrons into the wakefield. We have studied this injection scheme using 1D Particle in Cell (PIC) simulations. The simulations reveal phenomena and important physical processes that were not taken into account in previous models. In particular, at the collision of the laser pulses, most plasma electrons are trapped in the beatwave pattern and cannot contribute to the collective oscillation supporting the plasma wave. At this point, the fluid approximation fails and the plasma wake is strongly inhibited. Consequently, the injected charge is reduced by one order of magnitude compared to the predictions from previous models.Comment: 4 pages, 4 figure

    Viscosity in the excluded volume hadron gas model

    Full text link
    The shear viscosity η\eta in the van der Waals excluded volume hadron-resonance gas model is considered. For the shear viscosity the result of the non-relativistic gas of hard-core particles is extended to the mixture of particles with different masses, but equal values of hard-core radius r. The relativistic corrections to hadron average momenta in thermal equilibrium are also taken into account. The ratio of the viscosity η\eta to the entropy density s is studied. It monotonously decreases along the chemical freeze-out line in nucleus-nucleus collisions with increasing collision energy. As a function of hard-core radius r, a broad minimum of the ratio η/s0.3\eta/s\approx 0.3 near r0.5r \approx 0.5 fm is found at high collision energies. For the charge-neutral system at T=Tc=180T=T_c=180 MeV, a minimum of the ratio η/s0.24\eta/s\cong 0.24 is reached for r0.53r\cong 0.53 fm. To justify a hydrodynamic approach to nucleus-nucleus collisions within the hadron phase the restriction from below, r  0.2r~ \ge ~0.2 fm, on the hard-core hadron radius should be fulfilled in the excluded volume hadron-resonance gas.Comment: 12 pages, 3 figure

    Quasimonoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas

    Full text link
    The interaction of two laser pulses in an underdense plasma has proven to be able to inject electrons in plasma waves, thus providing a stable and tunable source of electrons. Whereas previous works focused on the "beatwave" injection scheme in which two lasers with the same polarization collide in a plasma, this present letter studies the effect of polarization and more specifically the interaction of two colliding cross-polarized laser pulses. It is shown both theoretically and experimentally that electrons can also be pre-accelerated and injected by the stochastic heating occurring at the collision of two cross-polarized lasers and thus, a new regime of optical injection is demonstrated. It is found that injection with cross-polarized lasers occurs at higher laser intensities.Comment: 4 pages, 4 figure

    Energy boost in laser wakefield accelerators using sharp density transitions

    Full text link
    The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime it is much more difficult to achieve phase locking. As an alternative we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations and we present gain estimations for single and multiple stages of rephasing

    Current induced transverse spin-wave instability in thin ferromagnets: beyond linear stability analysis

    Full text link
    A sufficiently large unpolarized current can cause a spin-wave instability in thin nanomagnets with asymmetric contacts. The dynamics beyond the instability is understood in the perturbative regime of small spin-wave amplitudes, as well as by numerically solving a discretized model. In the absence of an applied magnetic field, our numerical simulations reveal a hierarchy of instabilities, leading to chaotic magnetization dynamics for the largest current densities we consider.Comment: 14 pages, 10 figures; revtex

    Turbulence without pressure

    Get PDF
    We develop exact field theoretic methods to treat turbulence when the effect of pressure is negligible. We find explicit forms of certain probability distributions, demonstrate that the breakdown of Galilean invariance is responsible for intermittency and establish the operator product expansion. We also indicate how the effects of pressure can be turned on perturbatively.Comment: 12 page

    Early out-of-equilibrium beam-plasma evolution

    Full text link
    We solve analytically the out-of-equilibrium initial stage that follows the injection of a radially finite electron beam into a plasma at rest and test it against particle-in-cell simulations. For initial large beam edge gradients and not too large beam radius, compared to the electron skin depth, the electron beam is shown to evolve into a ring structure. For low enough transverse temperatures, the filamentation instability eventually proceeds and saturates when transverse isotropy is reached. The analysis accounts for the variety of very recent experimental beam transverse observations.Comment: to appear in Phys. Rev. Letter

    Anticorrelation between Ion Acceleration and Nonlinear Coherent Structures from Laser-Underdense Plasma Interaction

    Get PDF
    In laser-plasma experiments, we observed that ion acceleration from the Coulomb explosion of the plasma channel bored by the laser, is prevented when multiple plasma instabilities such as filamentation and hosing, and nonlinear coherent structures (vortices/post-solitons) appear in the wake of an ultrashort laser pulse. The tailoring of the longitudinal plasma density ramp allows us to control the onset of these insabilities. We deduced that the laser pulse is depleted into these structures in our conditions, when a plasma at about 10% of the critical density exhibits a gradient on the order of 250 {\mu}m (gaussian fit), thus hindering the acceleration. A promising experimental setup with a long pulse is demonstrated enabling the excitation of an isolated coherent structure for polarimetric measurements and, in further perspectives, parametric studies of ion plasma acceleration efficiency.Comment: 4 pages, 5 figure

    Short Intense Laser Pulse Collapse in Near-Critical Plasma

    Full text link
    It is observed that the interaction of an intense ultra-short laser pulse with an overdense gas jet results in the pulse collapse and the deposition of a significant part of energy in a small and well localized volume in the rising part of the gas jet, where the electrons are efficiently accelerated and heated. A collisionless plasma expansion over 150 microns at a sub-relativistic velocity (~c/3) has been optically monitored in time and space, and attributed to the quasistatic field ionization of the gas associated to the hot electron current. Numerical simulations in good agreement with the observations suggest the acceleration in the collapse region of relativistic electrons, along with the excitation of a sizeable magnetic dipole that sustains the electron current over several picoseconds. Perspectives of ion beam generation at high repetition rate directly from gas jets are discussed
    corecore