3,554 research outputs found
Nonclassical paths in the recurrence spectrum of diamagnetic atoms
Using time-independent scattering matrices, we study how the effects of
nonclassical paths on the recurrence spectra of diamagnetic atoms can be
extracted from purely quantal calculations. This study reveals an intimate
relationship between two types of nonclassical paths: exotic ghost orbits and
diffractive orbits. This relationship proves to be a previously unrecognized
reason for the success of semiclassical theories, like closed-orbit theory, and
permits a comprehensive reformulation of the semiclassical theory that
elucidates its convergence properties.Comment: 5 pages, 4 figure
Quantum Monte Carlo study of quasi-one-dimensional Bose gases
We study the behavior of quasi-one-dimensional (quasi-1d) Bose gases by Monte
Carlo techniques, i.e., by the variational Monte Carlo, the diffusion Monte
Carlo, and the fixed-node diffusion Monte Carlo technique. Our calculations
confirm and extend our results of an earlier study [Astrakharchik et al.,
cond-mat/0308585]. We find that a quasi-1d Bose gas i) is well described by a
1d model Hamiltonian with contact interactions and renormalized coupling
constant; ii) reaches the Tonks-Girardeau regime for a critical value of the 3d
scattering length a_3d; iii) enters a unitary regime for |a_3d| -> infinity,
where the properties of the gas are independent of a_3d and are similar to
those of a 1d gas of hard-rods; and iv) becomes unstable against cluster
formation for a critical value of the 1d gas parameter. The accuracy and
implications of our results are discussed in detail.Comment: 15 pages, 9 figure
Interval Slopes as Numerical Abstract Domain for Floating-Point Variables
The design of embedded control systems is mainly done with model-based tools
such as Matlab/Simulink. Numerical simulation is the central technique of
development and verification of such tools. Floating-point arithmetic, that is
well-known to only provide approximated results, is omnipresent in this
activity. In order to validate the behaviors of numerical simulations using
abstract interpretation-based static analysis, we present, theoretically and
with experiments, a new partially relational abstract domain dedicated to
floating-point variables. It comes from interval expansion of non-linear
functions using slopes and it is able to mimic all the behaviors of the
floating-point arithmetic. Hence it is adapted to prove the absence of run-time
errors or to analyze the numerical precision of embedded control systems
Dogs with macroadenomas have lower body temperature and heart rate than dogs with microadenomas
Pituitary macroadenomas compress the hypothalamus, which partly regulates heart rate and body temperature. The aim of this study was to investigate whether heart rate and/or body temperature could aid in clinically differentiating dogs with macroadenomas from dogs with microadenomas (i.e. small non-compressive pituitary mass). Two groups of dogs diagnosed with pituitary-dependent hyperadrenocorticism (i.e. Cushing’s disease) were included. Heart rate and body temperature were collected on initial presentation before any procedure. Dogs with macroadenoma had a significantly lower heart rate and body temperature (P < 0.01) compared to dogs with microadenoma. We suggest that the combined cut-off values of 84 beats per minutes and 38.3 °C in dogs with Cushing’s disease, especially with vague neurological signs (nine of 12 dogs = 75%), might help to suspect the presence of a macroadenoma
Restoring soil functionality in degraded areas of organic vineyards - Preliminary results of the ReSolVe project in the French vineyards
Degraded soil areas in vineyards are associated with problems in vine health, grape production and quality. Different causes for soil degradation are possible such as poor organic matter content, lower plant nutrient availability, pH, water deficiency, soil compaction / lower oxygenation… The aim of this preliminary study is to assess soil functionality (OM decomposition), biodiversity through mesofauna diversity and consequences for vine growth and quality
Probing the wave function and dynamics of the quintet multiexciton state with coherent control in a singlet fission material
High-spin states play a key role in chemical reactions found in nature. In artificial molecular systems, singlet fission produces a correlated triplet-pair state, a spin-bearing excited state that can be harnessed for more efficient solar-energy conversion and photocatalysis. In particular, triplet-pair states with overall quintet character (total spin S=2) have been discovered, but many of the fundamental properties of these biexciton states remain unexplored. The net spin of these pair states makes spin-sensitive probes attractive for their characterization. Combined with their surprisingly long spin coherence (of order microseconds), this opens up techniques relying on coherent spin control. Here we apply coherent manipulation of triplet-pair states to (i) isolate their spectral signatures from coexisting free triplets and (ii) selectively couple quintet and triplet states to specific nuclear spins. Using this approach, we separate quintet and triplet transitions and extract the relaxation dynamics and hyperfine couplings of the fission-borne spin states. Our results highlight the distinct properties of correlated and free triplet excitons and demonstrate optically induced nuclear spin polarization by singlet fission
Quantum interference and phonon-mediated back-action in lateral quantum dot circuits
Spin qubits have been successfully realized in electrostatically defined,
lateral few-electron quantum dot circuits. Qubit readout typically involves
spin to charge information conversion, followed by a charge measurement made
using a nearby biased quantum point contact. It is critical to understand the
back-action disturbances resulting from such a measurement approach. Previous
studies have indicated that quantum point contact detectors emit phonons which
are then absorbed by nearby qubits. We report here the observation of a
pronounced back-action effect in multiple dot circuits where the absorption of
detector-generated phonons is strongly modified by a quantum interference
effect, and show that the phenomenon is well described by a theory
incorporating both the quantum point contact and coherent phonon absorption.
Our combined experimental and theoretical results suggest strategies to
suppress back-action during the qubit readout procedure.Comment: 25 pages, 8 figure
Aesthetic response to color combinations: preference, harmony, and similarity
Previous studies of preference for and harmony of color combinations have produced confusing results. For example, some claim that harmony increases with hue similarity, whereas others claim that it decreases. We argue that such confusions are resolved by distinguishing among three types of judgments about color pairs: (1) preference for the pair as a whole, (2) harmony of the pair as a whole, and (3) preference for its figural color when viewed against its colored background. Empirical support for this distinction shows that pair preference and harmony both increase as hue similarity increases, but preference relies more strongly on component color preference and lightness contrast. Although pairs with highly contrastive hues are generally judged to be neither preferable nor harmonious, figural color preference ratings increase as hue contrast with the background increases. The present results thus refine and clarify some of the best-known and most contentious claims of color theorists
- …