3,554 research outputs found

    Nonclassical paths in the recurrence spectrum of diamagnetic atoms

    Get PDF
    Using time-independent scattering matrices, we study how the effects of nonclassical paths on the recurrence spectra of diamagnetic atoms can be extracted from purely quantal calculations. This study reveals an intimate relationship between two types of nonclassical paths: exotic ghost orbits and diffractive orbits. This relationship proves to be a previously unrecognized reason for the success of semiclassical theories, like closed-orbit theory, and permits a comprehensive reformulation of the semiclassical theory that elucidates its convergence properties.Comment: 5 pages, 4 figure

    Quantum Monte Carlo study of quasi-one-dimensional Bose gases

    Full text link
    We study the behavior of quasi-one-dimensional (quasi-1d) Bose gases by Monte Carlo techniques, i.e., by the variational Monte Carlo, the diffusion Monte Carlo, and the fixed-node diffusion Monte Carlo technique. Our calculations confirm and extend our results of an earlier study [Astrakharchik et al., cond-mat/0308585]. We find that a quasi-1d Bose gas i) is well described by a 1d model Hamiltonian with contact interactions and renormalized coupling constant; ii) reaches the Tonks-Girardeau regime for a critical value of the 3d scattering length a_3d; iii) enters a unitary regime for |a_3d| -> infinity, where the properties of the gas are independent of a_3d and are similar to those of a 1d gas of hard-rods; and iv) becomes unstable against cluster formation for a critical value of the 1d gas parameter. The accuracy and implications of our results are discussed in detail.Comment: 15 pages, 9 figure

    Interval Slopes as Numerical Abstract Domain for Floating-Point Variables

    Full text link
    The design of embedded control systems is mainly done with model-based tools such as Matlab/Simulink. Numerical simulation is the central technique of development and verification of such tools. Floating-point arithmetic, that is well-known to only provide approximated results, is omnipresent in this activity. In order to validate the behaviors of numerical simulations using abstract interpretation-based static analysis, we present, theoretically and with experiments, a new partially relational abstract domain dedicated to floating-point variables. It comes from interval expansion of non-linear functions using slopes and it is able to mimic all the behaviors of the floating-point arithmetic. Hence it is adapted to prove the absence of run-time errors or to analyze the numerical precision of embedded control systems

    Dogs with macroadenomas have lower body temperature and heart rate than dogs with microadenomas

    Get PDF
    Pituitary macroadenomas compress the hypothalamus, which partly regulates heart rate and body temperature. The aim of this study was to investigate whether heart rate and/or body temperature could aid in clinically differentiating dogs with macroadenomas from dogs with microadenomas (i.e. small non-compressive pituitary mass). Two groups of dogs diagnosed with pituitary-dependent hyperadrenocorticism (i.e. Cushing’s disease) were included. Heart rate and body temperature were collected on initial presentation before any procedure. Dogs with macroadenoma had a significantly lower heart rate and body temperature (P < 0.01) compared to dogs with microadenoma. We suggest that the combined cut-off values of 84 beats per minutes and 38.3 °C in dogs with Cushing’s disease, especially with vague neurological signs (nine of 12 dogs = 75%), might help to suspect the presence of a macroadenoma

    Restoring soil functionality in degraded areas of organic vineyards - Preliminary results of the ReSolVe project in the French vineyards

    Get PDF
    Degraded soil areas in vineyards are associated with problems in vine health, grape production and quality. Different causes for soil degradation are possible such as poor organic matter content, lower plant nutrient availability, pH, water deficiency, soil compaction / lower oxygenation… The aim of this preliminary study is to assess soil functionality (OM decomposition), biodiversity through mesofauna diversity and consequences for vine growth and quality

    Probing the wave function and dynamics of the quintet multiexciton state with coherent control in a singlet fission material

    Get PDF
    High-spin states play a key role in chemical reactions found in nature. In artificial molecular systems, singlet fission produces a correlated triplet-pair state, a spin-bearing excited state that can be harnessed for more efficient solar-energy conversion and photocatalysis. In particular, triplet-pair states with overall quintet character (total spin S=2) have been discovered, but many of the fundamental properties of these biexciton states remain unexplored. The net spin of these pair states makes spin-sensitive probes attractive for their characterization. Combined with their surprisingly long spin coherence (of order microseconds), this opens up techniques relying on coherent spin control. Here we apply coherent manipulation of triplet-pair states to (i) isolate their spectral signatures from coexisting free triplets and (ii) selectively couple quintet and triplet states to specific nuclear spins. Using this approach, we separate quintet and triplet transitions and extract the relaxation dynamics and hyperfine couplings of the fission-borne spin states. Our results highlight the distinct properties of correlated and free triplet excitons and demonstrate optically induced nuclear spin polarization by singlet fission

    Quantum interference and phonon-mediated back-action in lateral quantum dot circuits

    Full text link
    Spin qubits have been successfully realized in electrostatically defined, lateral few-electron quantum dot circuits. Qubit readout typically involves spin to charge information conversion, followed by a charge measurement made using a nearby biased quantum point contact. It is critical to understand the back-action disturbances resulting from such a measurement approach. Previous studies have indicated that quantum point contact detectors emit phonons which are then absorbed by nearby qubits. We report here the observation of a pronounced back-action effect in multiple dot circuits where the absorption of detector-generated phonons is strongly modified by a quantum interference effect, and show that the phenomenon is well described by a theory incorporating both the quantum point contact and coherent phonon absorption. Our combined experimental and theoretical results suggest strategies to suppress back-action during the qubit readout procedure.Comment: 25 pages, 8 figure

    Aesthetic response to color combinations: preference, harmony, and similarity

    Get PDF
    Previous studies of preference for and harmony of color combinations have produced confusing results. For example, some claim that harmony increases with hue similarity, whereas others claim that it decreases. We argue that such confusions are resolved by distinguishing among three types of judgments about color pairs: (1) preference for the pair as a whole, (2) harmony of the pair as a whole, and (3) preference for its figural color when viewed against its colored background. Empirical support for this distinction shows that pair preference and harmony both increase as hue similarity increases, but preference relies more strongly on component color preference and lightness contrast. Although pairs with highly contrastive hues are generally judged to be neither preferable nor harmonious, figural color preference ratings increase as hue contrast with the background increases. The present results thus refine and clarify some of the best-known and most contentious claims of color theorists
    • …
    corecore