1,100 research outputs found
Regolith production and transport at the Susquehanna Shale Hills Critical Zone Observatory, Part 2: Insights from meteoric 10Be
Regolith-mantled hillslopes are ubiquitous features of most temperate landscapes, and their morphology reflects the climatically, biologically, and tectonically mediated interplay between regolith production and downslope transport. Despite intensive research, few studies have quantified both of these mass fluxes in the same field site. Here we present an analysis of 87 meteoric 10Be measurements from regolith and bedrock within the Susquehanna Shale Hills Critical Zone Observatory (SSHO), in central Pennsylvania. Meteoric 10Be concentrations in bulk regolith samples (n=73) decrease with regolith depth. Comparison of hillslope meteoric 10Be inventories with analyses of rock chip samples (n=14) from a 24 m bedrock core confirms that >80% of the total inventory is retained in the regolith. The systematic downslope increase of meteoric 10Be inventories observed at SSHO is consistent with 10Be accumulation in slowly creeping regolith (∼ 0.2 cm yr-1). Regolith flux inferred from meteoric 10Be varies linearly with topographic gradient (determined from high-resolution light detection and ranging-based topography) along the upper portions of hillslopes at SSHO. However, regolith flux appears to depend on the product of gradient and regolith depth where regolith is thick, near the base of hillslopes. Meteoric 10Be inventories at the north and south ridgetops indicate minimum regolith residence times of 10.5 ± 3.7 and 9.1 ± 2.9 ky, respectively, similar to residence times inferred from U-series isotopes in Ma et al. (2013). The combination of our results with U-series-derived regolith production rates implies that regolith production and erosion rates are similar to within a factor of two on SSHO hillcrests. ©2013. American Geophysical Union. All Rights Reserved
Personal Lives? The Effects of nonwork behaviors on organizational image
Cataloged from PDF version of article.Organizational leaders may respond to employee nonwork behaviors because of the possible
influence on organizational image. We describe a typology of nonwork behaviors and discuss their
potential implications for organizational image. We explore conditions under which organizational
leaders may attempt to control employee nonwork behaviors and review the available alternatives
for organizational control. We conclude by discussing the theoretical and practical implications of
research on nonwork behavior
A Millimeter-wave Galactic Plane Survey with the BICEP Polarimeter
In order to study inflationary cosmology and the Milky Way Galaxy's composition and magnetic field structure, Stokes I, Q, and U maps of the Galactic plane covering the Galactic longitude range 260° < ℓ < 340° in three atmospheric transmission windows centered on 100, 150, and 220 GHz are presented. The maps sample an optical depth 1 ≾ AV ≾ 30, and are consistent with previous characterizations of the Galactic millimeter-wave frequency spectrum and the large-scale magnetic field structure permeating the interstellar medium. The polarization angles in all three bands are generally perpendicular to those measured by starlight polarimetry as expected and show changes in the structure of the Galactic magnetic field on the scale of 60°. The frequency spectrum of degree-scale Galactic emission is plotted between 23 and 220 GHz (including WMAP data) and is fit to a two-component (synchrotron and dust) model showing that the higher frequency BICEP data are necessary to tightly constrain the amplitude and spectral index of Galactic dust. Polarized emission is detected over the entire region within two degrees of the Galactic plane, indicating the large-scale magnetic field is oriented parallel to the plane of the Galaxy. A trend of decreasing polarization fraction with increasing total intensity is observed, ruling out the simplest model of a constant Galactic magnetic field orientation along the line of sight in the Galactic plane. A generally increasing trend of polarization fraction with electromagnetic frequency is found, varying from 0.5%-1.5% at frequencies below 50 GHz to 2.5%-3.5% above 90 GHz. The effort to extend the capabilities of BICEP by installing 220 GHz band hardware is described along with analysis of the new band
The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter
The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric
array designed to study the polarization of the cosmic microwave background
radiation (CMB) and galactic foreground emission. Such measurements probe the
energy scale of the inflationary epoch, tighten constraints on cosmological
parameters, and verify our current understanding of CMB physics. Robinson
consists of a 250-mm aperture refractive telescope that provides an
instantaneous field-of-view of 17 degrees with angular resolution of 55 and 37
arcminutes at 100 GHz and 150 GHz, respectively. Forty-nine pair of
polarization-sensitive bolometers are cooled to 250 mK using a 4He/3He/3He
sorption fridge system, and coupled to incoming radiation via corrugated feed
horns. The all-refractive optics is cooled to 4 K to minimize polarization
systematics and instrument loading. The fully steerable 3-axis mount is capable
of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s.
Robinson has begun its first season of observation at the South Pole. Given the
measured performance of the instrument along with the excellent observing
environment, Robinson will measure the E-mode polarization with high
sensitivity, and probe for the B-modes to unprecedented depths. In this paper
we discuss aspects of the instrument design and their scientific motivations,
scanning and operational strategies, and the results of initial testing and
observations.Comment: 18 pages, 11 figures. To appear in Millimeter and Submillimeter
Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, 6275,
200
Fusion of radioactive Sn with Ni
Evaporation residue and fission cross sections of radioactive Sn on
Ni were measured near the Coulomb barrier. A large sub-barrier fusion
enhancement was observed. Coupled-channel calculations including inelastic
excitation of the projectile and target, and neutron transfer are in good
agreement with the measured fusion excitation function. When the change in
nuclear size and shift in barrier height are accounted for, there is no extra
fusion enhancement in Sn+Ni with respect to stable Sn+Ni.
A systematic comparison of evaporation residue cross sections for the fusion of
even Sn and Sn with Ni is presented.Comment: 9 pages, 11 figure
- …