267 research outputs found

    Cataclysmic Variables — X-rays and Optical Activity in V1223 Sgr and V709 Cas

    Get PDF
    Intermediate polars are a major fraction of all cataclysmic variables detected by INTEGRAL in hard X-ray. These objects have recently been proposed to be the dominant X-ray source population detected near the Galactic centre, and they also contribute significantly to X-ray diffuse Galactic ridge emission. Nevertheless, only 25% of all known intermediate polars have been detected in hard X-ray. This fact can be related to the activity state of these close interacting binaries.A multi-frequency (from optical to X-ray) investigation of intermediate polars is essential for understanding the physical mechanisms responsible for the observed activity of these objects

    Wind mass transfer in S-type symbiotic binaries III. Confirmation of a wind focusing in EG Andromedae from the nebular [OIII]\lambda 5007 line

    Full text link
    Context. The structure of the wind from the cool giants in symbiotic binaries carries important information for understanding the wind mass transfer to their white dwarf companions and its fuelling. Aims. In this paper, we indicate a non-spherical distribution of the neutral wind zone around the red giant (RG) in the symbiotic binary star, EG And. Methods. We achieved this aim by analysing the periodic orbital variations of fluxes and radial velocities of individual components of the Hα\alpha and [OIII]λ\lambda5007 lines observed on our high-cadence medium (R \sim 11 000) and high-resolution (R \sim 38 000) spectra. Results. The asymmetric shaping of the neutral wind zone at the near-orbital-plane region is indicated by: (i) the asymmetric course of the Hα\alpha core emission fluxes along the orbit; (ii) the presence of their secondary maximum around the orbital phase φ=0.1\varphi = 0.1, which is possibly caused by the refraction effect; and (iii) the properties of the Hα\alpha broad wing emission originating by Raman scattering on H0^0 atoms. The wind is substantially compressed from polar directions to the orbital plane as constrained by the location of the [OIII]λ\lambda5007 line emission zones in the vicinity of the RG at/around its poles. The corresponding mass-loss rate from the polar regions of 108\lesssim 10 ^{-8} Msun/yr is a factor of 10\gtrsim 10 lower than the average rate of 107\approx 10^{-7}Msun/yr derived from nebular emission of the ionised wind from the RG. Furthermore, it is two orders of magnitude lower than that measured in the near-orbital-plane region from Rayleigh scattering. Conclusions. The startling properties of the nebular [OIII]λ\lambda5007 line in EG And provides an independent indication of the wind focusing towards the orbital plane.Comment: 10 pages, 8 figure

    Density asymmetry and wind velocities in the orbital plane of the symbiotic binary EG Andromedae

    Full text link
    Context. Non-dusty late-type giants without a corona and large-scale pulsations represent objects that do not fulfil the conditions under which standard mass-loss mechanisms can be applied efficiently. The driving mechanism of their winds is still unknown. Aims. The main goal of this work is to match the radial velocities of absorbing matter with a depth in the red giant (RG) atmosphere in the S-type symbiotic star EG And. Methods. We measured fluxes and radial velocities of ten FeI absorption lines from spectroscopic observations with a resolution of ~30 000. At selected orbital phases, we modelled their broadened profiles, including all significant broadening mechanisms. Results. The selected FeI absorption lines at 5151 - 6469A, originate at a radial distance ~1.03 RG radii from its centre. The corresponding radial velocity is typically ~1 km/s , which represents a few percent of the terminal velocity of the RG wind. The high scatter of the radial velocities of several km/s in the narrow layer of the stellar atmosphere points to the complex nature of the near-surface wind mass flow. The average rotational velocity of 11 km/s implies that the rotation of the donor star can contribute to observed focusing the wind towards the orbital plane. The orbital variability of the absorbed flux indicates the highest column densities of the wind in the area between the binary components, even though the absorbing neutral material is geometrically more extended from the opposite side of the giant. This wind density asymmetry in the orbital plane region can be ascribed to gravitational focusing by the white dwarf companion. Conclusions. Our results suggest that both gravitational and rotational focusing contribute to the observed enhancement of the RG wind towards the orbital plane, which makes mass transfer by the stellar wind highly efficient.Comment: 12 pages, 10 figure

    Feasibility of a community healthy eating and cooking intervention featuring traditional African Caribbean foods from participant and staff perspectives

    Get PDF
    Culturally appropriate healthy eating resources are intended to help people from different ethnic backgrounds consume diets reflecting government dietary recommendations, yet evidence on use in the target groups is lacking. This study evaluated the feasibility of a new brief culturally appropriate community intervention that aimed to introduce food-based healthy eating and recipe resources featuring African Caribbean foods, which were recently co-developed with people from these ethnic backgrounds. Working with a community organization in the UK, a single-arm study was used to collect verbal data from participants and staff on the acceptability of intervention whilst knowledge, skills and behaviours related to healthy eating were evaluated using pre-, post- and follow-up questionnaires. A total of 30 participants were recruited, and 22 completed all three questionnaires; who were mostly female aged 55 years+ (n = 17) and of African Caribbean ethnicity (45%, n = 10), with 32% (n = 7) reporting no educational attainment. At post-intervention and follow-up, most participants reported high satisfaction (n = 21, 95%) with the intervention sessions and high levels of confidence in using the resources at home within budget. The number of participants who were familiar with the healthy eating guidance featuring Caribbean foods increased from pre- (36%, n = 8) to post-intervention/follow-up (n = 22, 100%) (p < 0.05). Findings suggest the intervention is feasible in a community setting and could help increase awareness and use of culturally appropriate healthy eating guidance amongst a diverse group

    T Tauri stars in the SuperWASP and NSVS surveys II. Spectral modelling

    Get PDF
    We present results from long-term spectroscopic monitoring of 21 T-Tauri stars located in the Taurus–Auriga star-forming region (SFR). We combine medium and high-dispersion Echelle spectroscopy obtained at the Stará Lesná, Skalnaté Pleso (both in Slovakia), and Tautenburg (Germany) observatories with low-resolution flux-calibrated spectra from Asiago (Italy) observatory all taken between 2015 and 2018. We extend the coverage by additional medium-resolution spectra from Stará Lesná obtained in 2022. In the previous paper, we measured photometric periods of these targets in a range of 0.7–3.1 d, which could be due to the rotation of a spotted surface or binarity. Here, we use the broadening-function technique to determine the radial and projected rotational velocities to reveal any close binary companion. Our analysis concludes that no such companion is present with an orbital period equal to the photometric period. We focus our analysis primarily on determining atmospheric parameters such as surface gravity log g, effective temperature Teff, and metallicity [Fe/H]. Additionally, we measure the equivalent width of H α, Li i, and interstellar Na i lines. We also investigate the effect of possible reddening on individual targets and construct the HR diagram of our sample. Using pre-main-sequence evolutionary models, we determine the age of our targets. This analysis hints at ages younger than 50 Myr with mean age 5 ± 3 Myr, masses between 0.75 and 2.10 M⊙, and minimum radii in the range 0.60–3.17 R⊙. Altogether, the results are consistent with expected young stars with larger radii than those of main-sequence stars

    On the nature of the candidate T-Tauri star V501 Aurigae

    Get PDF
    We report new multi-colour photometry and high-resolution spectroscopic observations of the long-period variable V501 Aur, previously considered to be a weak-lined T-Tauri star belonging to the Taurus-Auriga star-forming region. The spectroscopic observations reveal that V501 Aur is a single-lined spectroscopic binary system with a 68.8-day orbital period, a slightly eccentric orbit (e ~ 0.03), and a systemic velocity discrepant from the mean of Taurus-Auriga. The photometry shows quasi-periodic variations on a different, ~55-day timescale that we attribute to rotational modulation by spots. No eclipses are seen. The visible object is a rapidly rotating (vsini ~ 25 km/s) early K star, which along with the rotation period implies it must be large (R > 26.3 Rsun), as suggested also by spectroscopic estimates indicating a low surface gravity. The parallax from the Gaia mission and other independent estimates imply a distance much greater than the Taurus-Auriga region, consistent with the giant interpretation. Taken together, this evidence together with a re-evaluation of the LiI~λ\lambda6707 and Hα\alpha lines shows that V501 Aur is not a T-Tauri star, but is instead a field binary with a giant primary far behind the Taurus-Auriga star-forming region. The large mass function from the spectroscopic orbit and a comparison with stellar evolution models suggest the secondary may be an early-type main-sequence star.Comment: 13 pages, 7 figures. Accepted to MNRA
    corecore