2,442 research outputs found

    Strategies to augment volitional and reflex function may improve locomotor capacity following incomplete spinal cord injury

    Get PDF
    Many studies highlight the remarkable plasticity demonstrated by spinal circuits following an incomplete spinal cord injury (SCI). Such plasticity can contribute to improvements in volitional motor recovery, such as walking function, although similar mechanisms underlying this recovery may also contribute to the manifestation of exaggerated responses to afferent input, or spastic behaviors. Rehabilitation interventions directed toward augmenting spinal excitability have shown some initial success in improving locomotor function. However, the potential effects of these strategies on involuntary motor behaviors may be of concern. In this article, we provide a brief review of the mechanisms underlying recovery of volitional function and exaggerated reflexes, and the potential overlap between these changes. We then highlight findings from studies that explore changes in spinal excitability during volitional movement in controlled conditions, as well as altered kinematic and behavioral performance during functional tasks. The initial focus will be directed toward recovery of reflex and volitional behaviors following incomplete SCI, followed by recent work elucidating neurophysiological mechanisms underlying patterns of static and dynamic muscle activation following chronic incomplete SCI during primarily single-joint movements. We will then transition to studies of locomotor function and the role of altered spinal integration following incomplete SCI, including enhanced excitability of specific spinal circuits with physical and pharmacological interventions that can modulate locomotor output. The effects of previous and newly developed strategies will need to focus on changes in both volitional function and involuntary spastic reflexes for the successful translation of effective therapies to the clinical setting

    More Holographic Berezinskii-Kosterlitz-Thouless Transitions

    Full text link
    We find two systems via holography that exhibit quantum Berezinskii-Kosterlitz-Thouless (BKT) phase transitions. The first is the ABJM theory with flavor and the second is a flavored (1,1) little string theory. In each case the transition occurs at nonzero density and magnetic field. The BKT transition in the little string theory is the first example of a quantum BKT transition in (3+1) dimensions. As in the "original" holographic BKT transition in the D3/D5 system, the exponential scaling is destroyed at any nonzero temperature and the transition becomes second order. Along the way we construct holographic renormalization for probe branes in the ABJM theory and propose a scheme for the little string theory. Finally, we obtain the embeddings and (half of) the meson spectrum in the ABJM theory with massive flavor.Comment: 24 pages, 5 figure

    A Holographic Fractional Topological Insulator

    Full text link
    We give a holographic realization of the recently proposed low energy effective action describing a fractional topological insulator. In particular we verify that the surface of this hypothetical material supports a fractional quantum Hall current corresponding to half that of a Laughlin state.Comment: 4 pages, 2 figure

    Jets in strongly-coupled N = 4 super Yang-Mills theory

    Full text link
    We study jets of massless particles in N=4 super Yang-Mills using the AdS/CFT correspondence both at zero and finite temperature. We set up an initial state corresponding to a highly energetic quark/anti-quark pair and follow its time evolution into two jets. At finite temperature the jets stop after traveling a finite distance, whereas at zero temperature they travel and spread forever. We map out the corresponding baryon number charge density and identify the generic late time behavior of the jets as well as features that depend crucially on the initial conditions.Comment: 21 pages, 12 figures. Added discussion regarding string profiles in more than one spatial dimension. Refs adde

    Fluorescence measurements of expanding strongly-coupled neutral plasmas

    Full text link
    We report new detailed density profile measurements in expanding strongly-coupled neutral plasmas. Using laser-induced fluorescence techniques, we determine plasma densities in the range of 10^5 to 10^9/cm^3 with a time resolution limit as small as 7 ns. Strong-coupling in the plasma ions is inferred directly from the fluorescence signals. Evidence for strong-coupling at late times is presented, confirming a recent theoretical result.Comment: submitted to PR

    Corrosion Protection by Octadecylphosphonic Acid in Flow Conditions

    Get PDF
    The aim of this work was to examine the influence of the flow rate of corrosive media on the stability of self-assembled films of octadecylphosphonic acid on copper-nickel alloy and stainless steel. The studies were conducted in river and seawater in a laboratory scale flow system. Corrosion behaviour of protected and unprotected alloys was examined by electrochemical techniques, electrochemical impedance spectroscopy, and polarization measurements. The results show that octadecylphosphonic acid films can efficiently protect copper-nickel and stainless steel from corrosion in flowing natural waters. The flow of corrosive media had the highest influence on the stability of films on CuNi in seawater, while in all other studied cases, the protective properties of ODPA film changed insignificantly with the change of the flow rate

    Household management of young families: the birth of the first child

    Get PDF
    corecore