41 research outputs found

    Practical Aspects of microRNA Target Prediction

    Get PDF
    microRNAs (miRNAs) are endogenous non-coding RNAs that control gene expression at the posttranscriptional level. These small regulatory molecules play a key role in the majority of biological processes and their expression is also tightly regulated. Both the deregulation of genes controlled by miRNAs and the altered miRNA expression have been linked to many disorders, including cancer, cardiovascular, metabolic and neurodegenerative diseases. Therefore, it is of particular interest to reliably predict potential miRNA targets which might be involved in these diseases. However, interactions between miRNAs and their targets are complex and very often there are numerous putative miRNA recognition sites in mRNAs. Many miRNA targets have been computationally predicted but only a limited number of these were experimentally validated. Although a variety of miRNA target prediction algorithms are available, results of their application are often inconsistent. Hence, finding a functional miRNA target is still a challenging task. In this review, currently available and frequently used computational tools for miRNA target prediction, i.e., PicTar, TargetScan, DIANA-microT, miRanda, rna22 and PITA are outlined and various practical aspects of miRNA target analysis are extensively discussed. Moreover, the performance of three algorithms (PicTar, TargetScan and DIANA-microT) is both demonstrated and evaluated by performing an in-depth analysis of miRNA interactions with mRNAs derived from genes triggering hereditary neurological disorders known as trinucleotide repeat expansion diseases (TREDs), such as Huntington’s disease (HD), a number of spinocerebellar ataxias (SCAs), and myotonic dystrophy type 1 (DM1)

    The Role of Dicer Protein Partners in the Processing of MicroRNA Precursors

    Get PDF
    One of the cellular functions of the ribonuclease Dicer is to process microRNA precursors (pre-miRNAs) into mature microRNAs (miRNAs). Human Dicer performs this function in cooperation with its protein partners, AGO2, PACT and TRBP. The exact role of these accessory proteins in Dicer activity is still poorly understood. In this study, we used the northern blotting technique to investigate pre-miRNA cleavage efficiency and specificity after depletion of AGO2, PACT and TRBP by RNAi. The results showed that the inhibition of either Dicer protein partner substantially affected not only miRNA levels but also pre-miRNA levels, and it had a rather minor effect on the specificity of Dicer cleavage. The analysis of the Dicer cleavage products generated in vitro revealed the presence of a cleavage intermediate when pre-miRNA was processed by recombinant Dicer alone. This intermediate was not observed during pre-miRNA cleavage by endogenous Dicer. We demonstrate that AGO2, PACT and TRBP were required for the efficient functioning of Dicer in cells, and we suggest that one of the roles of these proteins is to assure better synchronization of cleavages triggered by two RNase III domains of Dicer

    Reduced Mature MicroRNA Levels in Association with Dicer Loss in Human Temporal Lobe Epilepsy with Hippocampal Sclerosis

    Get PDF
    Hippocampal sclerosis (HS) is a common pathological finding in patients with temporal lobe epilepsy (TLE) and is associated with altered expression of genes controlling neuronal excitability, glial function, neuroinflammation and cell death. MicroRNAs (miRNAs), a class of small non-coding RNAs, function as post-transcriptional regulators of gene expression and are critical for normal brain development and function. Production of mature miRNAs requires Dicer, an RNAase III, loss of which has been shown to cause neuronal and glial dysfunction, seizures, and neurodegeneration. Here we investigated miRNA biogenesis in hippocampal and neocortical resection specimens from pharmacoresistant TLE patients and autopsy controls. Western blot analysis revealed protein levels of Dicer were significantly lower in certain TLE patients with HS. Dicer levels were also reduced in the hippocampus of mice subject to experimentally-induced epilepsy. To determine if Dicer loss was associated with altered miRNA processing, we profiled levels of 380 mature miRNAs in control and TLE-HS samples. Expression of nearly 200 miRNAs was detected in control human hippocampus. In TLE-HS samples there was a large-scale reduction of miRNA expression, with 51% expressed at lower levels and a further 24% not detectable. Primary transcript (pri-miRNAs) expression levels for several tested miRNAs were not different between control and TLE-HS samples. These findings suggest loss of Dicer and failure of mature miRNA expression may be a feature of the pathophysiology of HS in patients with TLE

    miR-135A Regulates Preimplantation Embryo Development through Down-Regulation of E3 Ubiquitin Ligase Seven in Absentia Homolog 1A (SIAH1A) Expression

    Get PDF
    Background: MicroRNAs (miRNAs) are small non-coding RNA molecules capable of regulating transcription and translation. Previously, a cluster of miRNAs that are specifically expressed in mouse zygotes but not in oocytes or other preimplantation stages embryos are identified by multiplex real-time polymerase chain reaction-based miRNA profiling. The functional role of one of these zygote-specific miRNAs, miR-135a, in preimplantation embryo development was investigated. Methodology/Principal Findings: Microinjection of miR-135a inhibitor suppressed first cell cleavage in more than 30% of the zygotes. Bioinformatics analysis identified E3 Ubiquitin Ligase Seven In Absentia Homolog 1A (Siah1a) as a predicted target of miR-135a. Western blotting and 3′UTR luciferase functional assays demonstrated that miR-135a down-regulated the expression of Siah1 in HeLa cells and in mouse zygotes. Siah1a was expressed in preimplantation embryos and its expression pattern negatively correlated with that of miR-135a. Co-injection of Siah1a-specific antibody with miR-135a inhibitor partially nullified the effect of miR-135a inhibition. Proteasome inhibition by MG-132 revealed that miR-135a regulated proteasomal degradation and potentially controlled the expression of chemokinesin DNA binding protein (Kid). Conclusions/Significance: The present study demonstrated for the first time that zygotic specific miRNA modulates the first cell cleavage through regulating expression of Siah1a. © 2011 Pang et al.published_or_final_versio

    Regulation of microRNA biogenesis and turnover by animals and their viruses

    Get PDF
    Item does not contain fulltextMicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes

    The panorama of miRNA-mediated mechanisms in mammalian cells

    Get PDF

    Artifi cial fertilizers, nitrates and malicious cancer

    No full text
    Azot jest jednym z najważniejszych pierwiastków w przyrodzie, będąc głównym składnikiem atmosfery oraz składnikiem budulcowym DNA i białek wszystkich organizmów. Zawartość związków azotowych w glebie decyduje o jej żyzności. Dlatego więc związki azotu są szeroko stosowane w postaci sztucznych nawozów w celu zwiększenia plonów. Nadmiar zastosowanych nawozów, nie zbilansowany z intensywnością produkcji roślinnej, może stać się źródłem zanieczyszczenia azotanami wód powierzchownych oraz żywności. Związki azotu stosowane są również jako konserwanty żywności, zapobiegające rozwojowi bakterii jadu kiełbasianego (peklowanie). Podczas przetwarzania konserwowanych produktów azotany wchodzą w reakcję z zawartymi w mięsie aminami tworząc karcinogenne nitrozoaminy. Opisuje się związek nitrozoamin z rozwojem nowotworów przewodu pokarmowego (rak żołądka, rak jelita grubego, rak przełyku). Sygnalizowana jest również obecność w nawozach sztucznych soli metali ciężkich (ołów, arsen, kadm), które między innymi, mają wpływ na rozwój nowotworów przewodu pokarmowego i układu moczowego. Przedstawiono pokrótce sytuację epidemiologiczną i czynniki etiologiczne nowotworów żołądka, jelita grubego i przełyku.Nitrogen, as the main component of the atmosphere, and a component of the construction of DNA and proteins of all organisms, is among the most important elements in nature. The content of nitrogen compounds in soil decides about its fertility. Therefore, nitrogen compounds are widely applied in the form of artifi cial fertilizers in order to increase yield. An excess of the fertilizers used, unbalanced with the intensity of plant production, may become the source of contamination of surface waters and food with nitrates. Nitrogen compounds are also applied as food preservatives, preventing the development of Clostridium botulinum bacteria in food products (pickling meat). While processing conserved food products, nitrates enter into the reaction with amines which are present in meat and form carcinogenic nitrosamines. There are reports describing the relationship between nitrosamines and the development of gastrointestinal cancer (gastric cancer, colorectal cancer, oesophageal cancer). In addition, the presence of heavy metals salts in artifi cial fertilizers is also signaled, such as lead, arsenic and cadmium which, among other things, exert an eff ect on the development of cancer of the gastrointestinal tract and urinary system. The epidemiological situation and etiologic factors of gastric, colorectal and esophageal cancer are briefly presented
    corecore