883 research outputs found

    Identifying gaps between science and practitioners perspectives on land use: the case of managed realignment in the German Baltic coast

    Get PDF
    Through state-of-the art ecosystem modelling supported by ecological experimental data, the COMTESS Project (funding: German Federal Ministry of Education and Research) investigates potential synergies and trade offs in ecosystem service provision under different land-use scenarios in two German coastal areas till 2100. Overall goal is to explore alternative sustainable land-use strategies to best adapt to climate change. Two science-based land- use scenarios were developed for two study regions on the Baltic and North Sea coasts to contrast a business-as-usual scenario. We focus here on the Baltic Se case region. The underlying premise of these alternatives is managed realignment of current dikes inland for: 1) climate mitigation through wetland re-naturation or 2) multiple land use, including biomass harvesting for energetic purposes (Baltic Sea). Managed realignment is increasingly considered as a valid coastal defence strategy to lower long-term costs of hard coastal defence and restore critical coastal and experiments have been initiated since the 1990s in a number of northwest European countries. Though politically highly controversial and facing much public antagonism, managed realignment is effectively embedded in the current coastal management policy of the state of Mecklenburg Vorpommern on the German Baltic coast. Implementation, nevertheless, faces many obstacles. Project-based scenarios for the Baltic Sea were first evaluated by key regional and local policy, management and land use practitioners, each expert in their field of activity. Their evaluation and recommendations were subsequently used to develop a fourth land-use scenario. Using qualitative empirical social research methods we analyse divergences and convergences between expert views on the projects scenarios. We argue that managed realignment is currently being mainstreamed in science, policy and resource management arenas although representatives of local land users and inhabitants do not endorse this strategy and still foster a hard defence approach to coastal zone management. This is best illustrated in recurrent social mobilisation and resistance to managed realignment proposals. This points at important perception and preference gaps between science, policy and land users / inhabitants, which need to be resolved to formulate and implement sustainable and socially acceptable land use strategies

    Cerebral differences in explicit and implicit emotional processing - An fMRI study

    Get PDF
    The processing of emotional facial expression is a major part of social communication and understanding. In addition to explicit processing, facial expressions are also processed rapidly and automatically in the absence of explicit awareness. We investigated 12 healthy subjects by presenting them with an implicit and explicit emotional paradigm. The subjects reacted significantly faster in implicit than in explicit trials but did not differ in their error ratio. For the implicit condition increased signals were observed in particular in the thalami, the hippocampi, the frontal inferior gyri and the right middle temporal region. The analysis of the explicit condition showed increased blood-oxygen-level-dependent signals especially in the caudate nucleus, the cingulum and the right prefrontal cortex. The direct comparison of these 2 different processes revealed increased activity for explicit trials in the inferior, superior and middle frontal gyri, the middle cingulum and left parietal regions. Additional signal increases were detected in occipital regions, the cerebellum, and the right angular and lingual gyrus. Our data partially confirm the hypothesis of different neural substrates for the processing of implicit and explicit emotional stimuli. Copyright (c) 2007 S. Karger AG, Basel

    Random Field Models for Relaxor Ferroelectric Behavior

    Full text link
    Heat bath Monte Carlo simulations have been used to study a four-state clock model with a type of random field on simple cubic lattices. The model has the standard nonrandom two-spin exchange term with coupling energy JJ and a random field which consists of adding an energy DD to one of the four spin states, chosen randomly at each site. This Ashkin-Teller-like model does not separate; the two random-field Ising model components are coupled. When D/J=3D / J = 3, the ground states of the model remain fully aligned. When D/J4D / J \ge 4, a different type of ground state is found, in which the occupation of two of the four spin states is close to 50%, and the other two are nearly absent. This means that one of the Ising components is almost completely ordered, while the other one has only short-range correlations. A large peak in the structure factor S(k)S (k) appears at small kk for temperatures well above the transition to long-range order, and the appearance of this peak is associated with slow, "glassy" dynamics. The phase transition into the state where one Ising component is long-range ordered appears to be first order, but the latent heat is very small.Comment: 7 pages + 12 eps figures, to appear in Phys Rev

    Coexistence of the Critical Slowing Down and Glassy Freezing in Relaxor Ferroelectrics

    Full text link
    We have developed a dynamical model for the dielectric response in relaxor ferroelectrics which explicitly takes into account the coexistence of the critical slowing down and glassy freezing. The application of the model to the experiment in PMN allowed for the reconstruction of the nonequilibrium spin glass state order parameter and its comparison with the results of recent NMR experiment (Blinc et al., Phys. Rev. Lett. 83, No. 2 (1999)). It is shown that the degree of the local freezing is rather small even at temperatures where the field-cooled permittivity exceeds the frequency dependent permittivity by an order of magnitude. This observation indicates the significant role of the critical slowing down (accompanying the glass freezing) in the system dynamics. Also the theory predicts an important interrelationship between the frequency dependent permittivity and the zero-field-cooled permittivity, which proved to be consistent with the experiment in PMN (A. Levstik et. al., Phys. Rev. B 57, 11204 (1998))

    Critical exponents at the ferromagnetic transition in tetrakis(diethylamino)ethylene-C60_{60} (TDAE-C60_{60})

    Full text link
    Critical exponents at the ferromagnetic transition were measured for the first time in an organic ferromagnetic material tetrakis(dimethylamino)ethylene fullerene[60] (TDAE-C60_{60}). From a complete magnetization-temperature-field data set near Tc=16.1±0.05,T_{c}=16.1\pm 0.05, we determine the susceptibility and magnetization critical exponents γ=1.22±0.02\gamma =1.22\pm 0.02 and β=0.75±0.03\beta =0.75 \pm 0.03 respectively, and the field vs. magnetization exponent at TcT_{c} of δ=2.28±0.14\delta =2.28\pm 0.14. Hyperscaling is found to be violated by Ωdd1/4\Omega \equiv d^{\prime}-d \approx -1/4, suggesting that the onset of ferromagnetism can be related to percolation of a particular contact configuration of C60_{60} molecular orientations.Comment: 5 pages, including 3 figures; to appear in Phys. Rev. Let

    Miniaturized VIS-NIR Spectrometers Based on Narrowband and Tunable Transmission Cavity Organic Photodetectors with Ultrahigh Specific Detectivity above 1014 Jones

    Get PDF
    Spectroscopic photodetection plays a key role in many emerging applications such as context-aware optical sensing, wearable biometric monitoring, and biomedical imaging. Photodetectors based on organic semiconductors open many new possibilities in this field. However, ease of processing, tailorable optoelectronic properties, and sensitivity for faint light are still significant challenges. Here, the authors report a novel concept for a tunable spectral detector by combining an innovative transmission cavity structure with organic absorbers to yield narrowband organic photodetection in the wavelength range of 400–1100 nm, fabricated in a full-vacuum process. Benefiting from this strategy, one of the best performed narrowband organic photodetectors is achieved with a finely wavelength-selective photoresponse (full-width-at-half-maximum of ≈40 nm), ultrahigh specific detectivity above 1014 Jones, the maximum response speed of 555 kHz, and a large dynamic range up to 168 dB. Particularly, an array of transmission cavity organic photodetectors is monolithically integrated on a small substrate to showcase a miniaturized spectrometer application, and a true proof-of-concept transmission spectrum measurement is successfully demonstrated. The excellent performance, the simple device fabrication as well as the possibility of high integration of this new concept challenge state-of-the-art low-noise silicon photodetectors and will mature the spectroscopic photodetection into technological realities

    Aging and memory effects in beta-hydrochinone-clathrate

    Full text link
    The out-of-equilibrium low-frequency complex susceptibility of the orientational glass methanol(73%)-beta-hydrochinone-clathrate is studied using temperature-stop protocols in aging experiments . Although the material does not have a sharp glass transition aging effects including rejuvenation and memory are found at low temperatures. However, they turn out to be much weaker, however, than in conventional magnetic spin glasses.Comment: 5 pages RevTeX, 6 eps-figures include

    Worldwide food recall patterns over an eleven month period: A country perspective.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Following the World Health Organization Forum in November 2007, the Beijing Declaration recognized the importance of food safety along with the rights of all individuals to a safe and adequate diet. The aim of this study is to retrospectively analyze the patterns in food alert and recall by countries to identify the principal hazard generators and gatekeepers of food safety in the eleven months leading up to the Declaration.</p> <p>Methods</p> <p>The food recall data set was collected by the Laboratory of the Government Chemist (LGC, UK) over the period from January to November 2007. Statistics were computed with the focus reporting patterns by the 117 countries. The complexity of the recorded interrelations was depicted as a network constructed from structural properties contained in the data. The analysed network properties included degrees, weighted degrees, modularity and <it>k</it>-core decomposition. Network analyses of the reports, based on 'country making report' (<it>detector</it>) and 'country reported on' (<it>transgressor</it>), revealed that the network is organized around a dominant core.</p> <p>Results</p> <p>Ten countries were reported for sixty per cent of all faulty products marketed, with the top 5 countries having received between 100 to 281 reports. Further analysis of the dominant core revealed that out of the top five transgressors three made no reports (in the order China > Turkey > Iran). The top ten detectors account for three quarters of reports with three > 300 (Italy: 406, Germany: 340, United Kingdom: 322).</p> <p>Conclusion</p> <p>Of the 117 countries studied, the vast majority of food reports are made by 10 countries, with EU countries predominating. The majority of the faulty foodstuffs originate in ten countries with four major producers making no reports. This pattern is very distant from that proposed by the Beijing Declaration which urges all countries to take responsibility for the provision of safe and adequate diets for their nationals.</p

    Targeting the MYC interaction network in B-cell lymphoma via histone deacetylase 6 inhibition

    Get PDF
    Overexpression of MYC is a genuine cancer driver in lymphomas and related to poor prognosis. However, therapeutic targeting of the transcription factor MYC remains challenging. Here, we show that inhibition of the histone deacetylase 6 (HDAC6) using the HDAC6 inhibitor Marbostat-100 (M-100) reduces oncogenic MYC levels and prevents lymphomagenesis in a mouse model of MYC-induced aggressive B-cell lymphoma. M-100 specifically alters protein-protein interactions by switching the acetylation state of HDAC6 substrates, such as tubulin. Tubulin facilitates nuclear import of MYC, and MYC-dependent B-cell lymphoma cells rely on continuous import of MYC due to its high turn-over. Acetylation of tubulin impairs this mechanism and enables proteasomal degradation of MYC. M-100 targets almost exclusively B-cell lymphoma cells with high levels of MYC whereas non-tumor cells are not affected. M-100 induces massive apoptosis in human and murine MYC-overexpressing B-cell lymphoma cells. We identified the heat-shock protein DNAJA3 as an interactor of tubulin in an acetylation-dependent manner and overexpression of DNAJA3 resulted in a pronounced degradation of MYC. We propose a mechanism by which DNAJA3 associates with hyperacetylated tubulin in the cytoplasm to control MYC turnover. Taken together, our data demonstrate a beneficial role of HDAC6 inhibition in MYC-dependent B-cell lymphoma

    Susceptibility and Percolation in 2D Random Field Ising Magnets

    Get PDF
    The ground state structure of the two-dimensional random field Ising magnet is studied using exact numerical calculations. First we show that the ferromagnetism, which exists for small system sizes, vanishes with a large excitation at a random field strength dependent length scale. This {\it break-up length scale} LbL_b scales exponentially with the squared random field, exp(A/Δ2)\exp(A/\Delta^2). By adding an external field HH we then study the susceptibility in the ground state. If L>LbL>L_b, domains melt continuously and the magnetization has a smooth behavior, independent of system size, and the susceptibility decays as L2L^{-2}. We define a random field strength dependent critical external field value ±Hc(Δ)\pm H_c(\Delta), for the up and down spins to form a percolation type of spanning cluster. The percolation transition is in the standard short-range correlated percolation universality class. The mass of the spanning cluster increases with decreasing Δ\Delta and the critical external field approaches zero for vanishing random field strength, implying the critical field scaling (for Gaussian disorder) Hc(ΔΔc)δH_c \sim (\Delta -\Delta_c)^\delta, where Δc=1.65±0.05\Delta_c = 1.65 \pm 0.05 and δ=2.05±0.10\delta=2.05\pm 0.10. Below Δc\Delta_c the systems should percolate even when H=0. This implies that even for H=0 above LbL_b the domains can be fractal at low random fields, such that the largest domain spans the system at low random field strength values and its mass has the fractal dimension of standard percolation Df=91/48D_f = 91/48. The structure of the spanning clusters is studied by defining {\it red clusters}, in analogy to the ``red sites'' of ordinary site-percolation. The size of red clusters defines an extra length scale, independent of LL.Comment: 17 pages, 28 figures, accepted for publication in Phys. Rev.
    corecore