7 research outputs found

    To optimize gas flaring in Kirkuk refinery in various seasons via artificial intelligence techniques

    No full text
    Abstract Unavoidable flaring in downstream oil industry causes pollutant emission in large amounts which is potentially harmful to nearby cities or farms. Hence one must manage exhaust toxic gases to raise enough in atmosphere or redirect from such places. Since Kirkuk refinery in north Iraq is next-door to agricultural farms on west yet to residential areas on east optimizing its layout for flare stacks is something acute. In this work we wrote codes in MATLAB software to simulate incomplete rather than complete oxidation as well as pollutant generation reactions. Then we made use of FLEUENT software to simulate pollutant propagation in Kirkuk oil purifier complex yet also farther to city as well as farms with respect to seasonal air currents on lowest troposphere layer. Finally, we set neural network approach to train on simulation data thereafter to unify outcomes to turn into a fast technique for layout optimization. Results show that optimization process efficiency relies on air current velocities as well as its direction. At intermediate air flow rates optimum layout includes only a selective portion of existent flare stacks. Outcomes also illustrate that heuristic techniques that have stronger local search such as particle swarm or artificial immune system can improve flare layout in seasons with intermediate air currents here summer plus early months in autumn while approaches with weak local search like Monte Carlo are more appropriate in winter for which we have no or low air flows in Kirkuk governorate

    Hydrochemistry of groundwater in a coastal region and its repercussion on quality, a case study—Thoothukudi district, Tamil Nadu, India

    No full text
    A hydrogeochemical study was conducted in Thoothukudi district situated in the southeast coast of Tamil Nadu, India to identify the influence of saltwater intrusion and suitability of groundwater for domestic and agricultural purposes. Scattered studies of this coastal region have reported signs of seawater intrusion, salt pan and industrial activity together with natural weathering process. To have a holistic picture of geochemical processes in the entire district, a total of 135 groundwater samples were collected and analyzed for major cations and anions. The geochemical parameters were compared with world and Indian standards and it was found that most samples are unsuitable for drinking purpose. The geochemical facies of the groundwater showed Na–Cl as the dominant water type indicating the saline nature of the groundwater. Chadda’s plots show that most of the samples fall in the Na–Cl type of water due to seawater intrusion. The samples were classified with parameters like sodium absorption ratio, residual sodium carbonate, total hardness, chloride, index to base exchange, electrical conductivity and facies to determine their suitability for irrigation purpose. It was inferred that the samples falling along the coast are not suitable for the irrigation purpose. The seawater-mixing percentage indicates that strong mixing was observed in the near shore and at the proximity of the salt pan. The permanent hardness was predominant in all the samples compared to the carbonate hardness reducing its domestic usability
    corecore