59 research outputs found

    URWARE Wastewater Treatment Plant Models

    Get PDF
    In this document, a large number of mathematical models describing various physical, biological and chemical processes in a wastewater treatment plant are presented. In most cases, the models are fairly simple as they are inteded for steady-state simulations based on yearly averages of the influent wastewater charteristics. The combination of models forms a software tool namned URWARE (URban WAter REsearch model), which is a tool for substance flow analysis and energy calculations in wastewater treatment systems. All models are based on the MATLAB/Simulink platform. The different models can be combined in any fashion thereby creating various system structures that can be analysed and compared. The models keep track of numerous substances related to wastewater, such as organic substances, nutrients and to some extent heavy metals. Within all models the release of environmentally hazardous substances to water, soil and air are calculated. The results can be used as one (of many) information pathways for strategic decision making related to urban water systems. The individual models are described one by one and their behaviours are exemplified by simulation results. In many cases, comparisons with other available software models are given to validate (or at least make plausible) the results produced by the fairly simple URWARE models. Simulation results based on a combination of models into a complete wastewater treatment plant are also presented. However, details about the underlying theory and hypotheses on which the models are based cannot always be sufficiently described due to space limitations. Moreover, users should always be critical to any results predicted by models and not take them for granted simply because they have been calculated by a computer model. Knowledge about the real processes and comparisons with real data are imperative to evaluate whether the predicted results are reasonable or not. For the interested reader the complete source code to all models is included in an extensive appendix. A modelling task of this magnitude is never completed. The proposed models can always be further developed, improved and refined. Consequently, the models described in this document only represent the first version of the URWARE software. Many issues remain to be solved and further improvements to be done. However, it is the hope of the authors that the presented models are mature enough to be used, evaluated, modified and improved by other users outside the URWARE task group

    Is the Swedish wastewater sector ready for a transition to source separation?

    Get PDF
    Source separation of urine for recycling has been applied in small-scale and decentralized wastewater systems in Sweden for the past 25 years and for blackwater for pollution control even longer. The Swedish experience with source separating nutrient recycling systems is relatively well documented; however, few reports have specifically studied the potential for expansion of this practice. The aim of this study is to fill this knowledge gap by assessing the status of source-separating technologies in Sweden based on transition theory. This study uses a multi-level perspective to determine how ready the Swedish wastewater sector is for transitioning to alternative systems. Given the stability of the existing sewage wastewater regime, it seems unlikely that changes within the regime will lead to a quick and large-scale transition to source separation. Instead, the initiative must come from the niche itself, exploiting institutional cracks in the regime and opportunities from shifting trends in the landscape. If source separation is to be mainstreamed in Sweden, it will need to break into markets within the wastewater jurisdictions. In order to do so, further knowledge needs to be developed that will overcome glitches with immature technologies, uncertain legal conditions/status, investigate potential risks, and clearly define complementary system advantages. This may require the use of new perspectives that focus on holistic sustainable use of resources, including other nutrients than phosphorous, and taking into account global issues such as planetary boundaries and effects from climate change, such as water scarcity. This knowledge can then be used to establish guidelines, norms, and standards, as well as clarify the legislative structures that can support such a transition. There is also a strong need to improve knowledge dissemination regarding best-practices for implementing source-separation technologies and supporting organizational structures. Similarly, support for entrepreneurial activities within the niche needs to increase, not least through strengthening social networks and communication platforms

    Spatial and temporal trends of the Stockholm Convention POPs in mothers’ milk — a global review

    Get PDF

    Trends in Environmental Analysis

    Full text link
    corecore