627 research outputs found
Characterizing the Role of Adolescent Nicotine Exposure on the Mesocorticolimbic System and the Development of Mood and Anxiety Disorders
Adolescence is a period in which many are first introduced to cigarettes. With adolescence being a plastic neurodevelopmental period, exposure to addictive substances, like nicotine, may lead to abnormal neural development and consequently, behavioural and cognitive deficits. Importantly, nicotine exposure is linked to various psychiatric conditions including anxiety and depression. To assess the long-term neuropsychiatric-like effects of adolescent nicotine exposure, adolescent (PND 35-44) and early adult (PND 65-74) rats were exposed to nicotine. Once adults (PND 75), or later in adulthood (PND 105), rats were analyzed with a battery of behavioural, cognitive, molecular and cellular assays. Following adolescent, but not adult nicotine exposure, rats develop depressive and anxiety disorder phenotypes including temporal memory and social motivation deficits, relative to controls. Adolescent behavioural results were associated with a hyperdopaminergic, sub-cortical state through the mesolimbic pathway and an upregulation in pERK1/2 and downregulation in D1DR expression levels in the PFC
Spectrometer integrated with a facsimile camera
This invention integrates a spectrometer capability with the basic imagery function of facsimile cameras without significantly increasing mechanical or optical complexity, or interfering with the imaging function. The invention consists of a group of photodetectors arranged in a linear array in the focal plane of the facsimile camera with a separate narrow band interference filter centered over each photodetector. The interference filter photodetector array is on a line in the focal plane of the facsimile camera along the direction of image motion due to the rotation of the facsimile camera's vertical mirror. As the image of the picture element of interest travels down the interference filter photodetector array, the photodetector outputs are synchronously selected and sampled to provide spectral information on the single picture element
Preliminary Report on a Stratified Late Archaic-Woodland Era Rockshelter in Rogers County, Oklahoma
In northeastern Oklahoma, very little is known about the transition from the Late Archaic to the Woodland period (Wyckoff and Brooks, 1983: 55). To date, most of the archeological evidence documenting this time period has been derived from sites with mixed or otherwise uncertain components. In this report, we present a preliminary description of a small rockshelter, 34RO252, which has a Late Archaic deposit stratigraphically below a Woodland era cultural deposit. These two deposits are unmixed, discrete, and are physically separated by an apparently sterile clay soil horizon. It is anticipated that the stratified cultural deposits at this site will help characterize the transition from the Late Archaic to the Early Woodland period along the Verdigris River in northeast Oklahoma.
This site was first reported in April 1994 by two men who had discovered partially exposed human skeletal remains located in the rear remnant of a rockshelter at Oologah Lake in Rogers County, Oklahoma. The two men illegally excavated the remains and removed them from the site. 1 The rockshelter where the remains originated was subsequently examined by the authors and additional skeletal material was identified, in situ, in an exposed soil profile. A series of three radiocarbon assays, described below, placed the cultural deposit and the human remains within the Late Archaic-Woodland period (circa 780 B.C. to A.O. 900).2 This site is provisionally classified as corresponding to a cultural sequence that includes the old Grove C described by Purrington and Vehik
Prediction of Viking lander camera image quality
Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances
Performance and evaluation of the Viking lander camera performance prediction program
A computer program is described for predicting the performance of the Viking lander cameras. The predictions are primarily concerned with two objectives: (1) the picture quality of a reference test chart (of which there are three on each lander) to aid in diagnosing camera performance; and (2) the picture quality of cones with surface properties of a natural terrain to aid in predicting favorable illumination and viewing geometries and operational camera commands. Predictions made with this program are verified by experimental data obtained with a Viking-like laboratory facsimile camera
Analysis of testbed airborne multispectral scanner data from Superflux II
A test bed aircraft multispectral scanner (TBAMS) was flown during the James Shelf, Plume Scan, and Chesapeake Bay missions as part of the Superflux 2 experiment. Excellent correlations were obtained between water sample measurements of chlorophyll and sediment and TBAMS radiance data. The three-band algorithms used were insensitive to aircraft altitude and varying atmospheric conditions. This was particularly fortunate due to the hazy conditions during most of the experiments. A contour map of sediment, and also chlorophyll, was derived for the Chesapeake Bay plume along the southern Virginia-Carolina coastline. A sediment maximum occurs about 5 nautical miles off the Virginia Beach coast with a chlorophyll maximum slightly shoreward of this. During the James Shelf mission, a thermal anomaly (or front) was encountered about 50 miles from the coast. There was a minor variation in chlorophyll and sediment across the boundary. During the Chesapeake Bay mission, the Sun elevation increased from 50 degrees to over 70 degrees, interfering with the generation of data products
- …