62 research outputs found

    Methylation levels of a novel genetic element, EgNB3 as a candidate biomarker associated with the embryogenic competency of oil palm

    Get PDF
    The association between DNA methylation status and embryogenic competency in oil palm tissue culture was examined through Representational Difference Analysis (RDA) approach, using methylation-sensitive restriction endonucleases. "Difference Products" (DPs) of RDA derived from palms of similar genetic backgrounds but exhibiting different embryogenesis rates during the regeneration process were isolated. The DPs were sequenced using a pyrosequencing platform. To our knowledge, this is the first study profiling partial HpaII methylation sites in oil palm young leaf tissues which are potentially associated with embryogenic amenability through a genomic subtractive approach. Quantitative real-time PCR analysis demonstrated that the methylation status of a novel fragment, EgNB3, was higher in highly embryogenic leaf explants compared to low embryogenesis rate materials. These differences are likely to be contributed by the 5′-mCCGG-3′ and/or 5′-mCmCGG-3′ methylation patterns. Our data suggest that the differentially methylated site in EgNB3 has potential as a molecular biomarker for the screening of oil palm leaf explants for their embryogenic potentials

    Somaclonal variation in oil palm (Elaeis guineensis Jacq.) : the DNA methylation hypothesis

    No full text
    The occurrence of somaclonal variants (ca 5%) among populations of somatic embryo-derived oil palms (Elaeis guineensis Jacq.) currently hampers the scaling-up of clonal plant production. In order to investigate the relationship between the "mantled" somaclonal variant and possible alterations in genomic DNA methylation rate, two complementary approaches have been used. HPLC quantification of relative amounts of 5-methyl-deoxycytidine has shown that global methylation in leaf DNA of abnormal regenerants is 0.5-2.5% lower than in their normal counterparts (20.8% vs 22%, respectively). When comparing nodular compact calli and fast growing calli, yielding respectively 5% and 100% of "mantled" plantlets, this decrease was up to 4.5% (from 23.2 to 18.7%). An alternative method, the Sssl-methylase accepting assay, based on the enzymatic saturation of CG sites with methyl groups, gave convergent results. This work demonstrates that a correlation exists between DNA hypomethylation and the "mantled" somaclonal variation in oil palm. (Résumé d'auteur
    corecore