29 research outputs found

    Comparison of placental growth factor and fetal flow Doppler ultrasonography to identify fetal adverse outcomes in women with hypertensive disorders of pregnancy: an observational study.

    Get PDF
    BACKGROUND: Hypertensive disorders of pregnancy and intrauterine growth restriction (IUGR) are leading causes of maternal and perinatal morbidity and mortality. Failure to detect intrauterine growth restriction in women at high risk has been highlighted as a significant avoidable cause of serious fetal outcome. In this observational study we compare fetal flow using Doppler ultrasonography with a new test for placental growth factor (PlGF) to predict fetal adverse events. METHODS: Eighty-nine women with hypertensive disorders of pregnancy (24 with chronic hypertension, 17 with gestational hypertension, 12 with HELLP syndrome, 19 with preeclampsia and 17 with superimposed preeclampsia) were enrolled. A single maternal blood sample to measure free PlGF (Alere Triage) taken before 35 weeks of pregnancy was compared to the last Doppler ultrasound measurement of fetal flow before delivery. PlGF was classified as normal (PlGF>/=100 pg/ml), low (12<PlGF<100) or very low (PlGF</=12 pg/ml). A positive test for abnormal fetal flow was defined as either signs of centralisation of the fetal circulation or diastolic block or reverse flow in the umbilical artery or descending aorta; this was a criterion for delivery. Fetal outcomes were intrauterine growth restriction and birth before 37 weeks of pregnancy. RESULTS: In total 61/89 women had a preterm birth and 22 infants had IUGR. Of those who delivered preterm, 20/20 women with abnormal fetal flow and 36/41 (87.8%) women with normal fetal flow had low or very low PlGF. Of those infants with IUGR, 22/22 had low or very low maternal PlGF and 10/22 had abnormal fetal flow. CONCLUSIONS: PlGF may provide useful information before 35th gestational week to identify fetuses requiring urgent delivery, and those at risk of later adverse outcomes not identified by fetal flow Doppler ultrasonography

    Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice

    Get PDF
    <div><p>Objective</p><p>Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring.</p><p>Methods</p><p>Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia.</p><p>Results</p><p>Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7μg/mg vs. 19.3±5.6μg/mg, p = 4.4x10<sup>-2</sup>; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10<sup>-2</sup>). Placental and fetal weights did not differ between the groups. One mouse with liver disease developed early-onset preeclampsia-like symptoms with intrauterine growth restriction (IUGR).</p><p>Conclusions</p><p>A mouse model of late-onset preeclampsia was developed with the overexpression of hsFlt-1-e15a, verifying the <i>in vivo</i> pathologic effects of this primate-specific, predominant placental sFlt-1 isoform. HsFlt-1-e15a induced early-onset preeclampsia-like symptoms associated with IUGR in a mouse with a liver disease. Our findings support that hsFlt-1-e15a is central to the terminal pathway of preeclampsia, and it can induce the full spectrum of symptoms in this obstetrical syndrome.</p></div

    Identification of three human pseudogenes for subunit Vlb of cytochrome c oxidase: a molecular record of gene evolution

    No full text
    Three pseudogenes for the nuclear-encoded subunit VIb of cytochrome c oxidase (COX) were isolated by screening a human genomic library with cloned human cDNA coding for COX subunit VIb. The nucleotide sequences of the pseudogenes, designated PSI-COX6b-1, PSI-COX6b-2 and PSI-COX6b-3, were determined. Pseudogene PSI-COX6b-1 bears all the hallmarks of a processed pseudogene and diverged from the parental gene after the divergence of man and cow. Alu repetitive elements were integrated into the structural sequences of the other two pseudogenes. Comparison with the human and bovine cDNA sequences encoding COX subunit VIb suggests that PSI-COX6b-2 and PSI-COX6b-3 were formed earlier in evolution than PSI-COX6b-1. Genomic Southern analysis indicated that a few more pseudogenes for COX subunit VIb are likely to be present in the human genome. Identical nt differences with respect to the human cDNA sequence in the pseudogenes provide some clues on the evolution of the ancestral gene coding for COX subunit VIb

    Reinforcement of natural rubber by silica/silane in dependence of different amine types

    No full text
    Diphenyl guanidine (DPG) is the most commonly used secondary accelerator in silica-reinforced rubber compounds because of its additional positive effect on the silanization reaction and deactivation of free silanol groups that are left over after the silanization. However, because of health and safety concerns about the use of DPG, which decomposes to give highly toxic aniline during high processing temperature, safe alternatives are required. This work investigates the effect of various types of aliphatic amines having alkyl or cyclic structures and similar pKa (i.e., hexylamine [HEX], decylamine [DEC], octadecylamine [OCT], cyclohexylamine [CYC], dicyclohexylamine [DIC], and quinuclidine [QUI]) on the properties of silica-reinforced natural rubber (NR) compounds by taking the ones with DPG and without amine as references. When compared with the compound without amine, the use of all amine types reduces filler–filler interaction (i.e., the Payne effect) and enhances filler–rubber interaction, as indicated by bound rubber content and decreased heat capacity increment. The amines with alkyl chains can reduce the Payne effect and enhance cure rate to a greater extent compared with the amines with cyclic rings as a result of better accessibility toward the silica surface and a shielding effect because of less steric hindrance. The longer carbon tails on linear aliphatic amines ranging from HEX, DEC, to OCT lead to a lower Payne effect, lower heat capacity increment, higher bound rubber content, and higher modulus as well as tensile strength. Overall, the use of OCT provides silica-reinforced NR compounds with properties closest to the reference one with DPG and can act as a potential alternative for DPG

    Promoting interfacial compatibility of silica-reinforced natural rubber tire compounds by aliphatic amine

    No full text
    Octadecylamine (OCT) as an alternative for diphenyl guanidine (DPG) in silica-reinforced NR tire compounds with bis-(triethoxysilyl-propyl)tetrasulfide (TESPT) as silane coupling agent was investigated with focus on the improvement of compatibility between the silica surface and rubber molecules, by taking the amine-free rubber compound as a reference. The quantity of OCT and DPG was varied in a range of 2.4–9.5 mmol per 100 parts of rubber by weight (i.e., 0.5–2.5 phr). Bound rubber contents, changes in heat capacity (ΔCp), and immobilized polymer layer (χim) data prove an enhanced interfacial compatibility as the amines are absorbed on the polar silica surface and catalyze the silanization reaction. Comparing the two different amine types, the rubber compounds with OCT show higher interfacial compatibility than the ones with DPG, because of an additional shielding effect promoted by the long alkyl chain that leads to more hydrophobicity. Thus, the rubber compounds with OCT show higher physically bound rubber contents and consequently higher total bound rubber, a higher immobilized polymer layer, as well as a lower Payne effect. However, the compounds with OCT show a higher flocculation rate constant because the physical interactions between amine and silanol groups decrease under thermal treatment. The compounds with OCT show a lower cure torque difference that indicates a lower crosslink density, but because of the good interfacial interaction combining both chemical and physical interactions, the vulcanized rubber with OCT at optimum loading shows better mechanical properties and tan δ at 60 °C when compared with the DPG counterpart. At high (excessive) loading of amines, the compounds with DPG clearly have higher crosslink density and thus higher modulus as well as tensile strength compared with the use of OCT
    corecore