54,911 research outputs found
How to measure spatial distances?
The use of time--like geodesics to measure temporal distances is better
justified than the use of space--like geodesics for a measurement of spatial
distances. We give examples where a ''spatial distance'' cannot be
appropriately determined by the length of a space--like geodesic.Comment: 4 pages, latex, no figure
Deep ROSAT Surveys & the contribution of AGNs to the soft X-ray background
The ROSAT Deep Surveys in the Lockman Hole have revealed that AGNs are the main contributors (~75%) to the soft X-ray background in the 1–2 keV band. Using new optical/infrared and radio observations we have obtained a nearly complete identification (93%) of the 91 X-ray sources down to a limiting flux of 1.2·10^(–15) erg cm^(–2) s^(–1) in the 0.5–2.0 keV band. We present the optical colors and the emission line properties of our AGNs in comparison with other X-ray selected AGN samples. Furthermore we discuss the fraction of red AGNs found in the ROSAT Deep Surveys. From the ROSAT Deep Surveys we see no evidence for a new class of X-ray bright galaxies, which significantly contributes to the soft X-ray background
Pulsation in carbon-atmosphere white dwarfs: A new chapter in white dwarf asteroseismology
We present some of the results of a survey aimed at exploring the
asteroseismological potential of the newly-discovered carbon-atmosphere white
dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere
white dwarfs may drive low-order gravity modes. We demonstrate that our
theoretical results are consistent with the recent exciting discovery of
luminosity variations in SDSS J1426+5752 and some null results obtained by a
team of scientists at McDonald Observatory. We also present follow-up
photometric observations carried out by ourselves at the Mount Bigelow 1.6-m
telescope using the new Mont4K camera. The results of follow-up spectroscopic
observations at the MMT are also briefly reported, including the surprising
discovery that SDSS J1426+5752 is not only a pulsating star but that it is also
a magnetic white dwarf with a surface field near 1.2 MG. The discovery of
-mode pulsations in SDSS J1426+5752 is quite significant in itself as it
opens a fourth asteroseismological "window", after the GW Vir, V777 Her, and ZZ
Ceti families, through which one may study white dwarfs.Comment: 7 pages, 4 figures, to appear in Journal of Physics Conference
Proceedings for the 16th European White Dwarf Worksho
Mixtures of Charged Colloid and Neutral Polymer: Influence of Electrostatic Interactions on Demixing and Interfacial Tension
The equilibrium phase behavior of a binary mixture of charged colloids and
neutral, non-adsorbing polymers is studied within free-volume theory. A model
mixture of charged hard-sphere macroions and ideal, coarse-grained,
effective-sphere polymers is mapped first onto a binary hard-sphere mixture
with non-additive diameters and then onto an effective Asakura-Oosawa model [S.
Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is
defined by a single dimensionless parameter -- the ratio of the polymer
diameter to the effective colloid diameter. For high salt-to-counterion
concentration ratios, a free-volume approximation for the free energy is used
to compute the fluid phase diagram, which describes demixing into colloid-rich
(liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic
interactions shifts the demixing binodal toward higher polymer concentration,
stabilizing the mixture. The enhanced stability is attributed to a weakening of
polymer depletion-induced attraction between electrostatically repelling
macroions. Comparison with predictions of density-functional theory reveals a
corresponding increase in the liquid-vapor interfacial tension. The predicted
trends in phase stability are consistent with observed behavior of
protein-polysaccharide mixtures in food colloids.Comment: 16 pages, 5 figure
Spin correlations and exchange in square lattice frustrated ferromagnets
The J1-J2 model on a square lattice exhibits a rich variety of different
forms of magnetic order that depend sensitively on the ratio of exchange
constants J2/J1. We use bulk magnetometry and polarized neutron scattering to
determine J1 and J2 unambiguously for two materials in a new family of vanadium
phosphates, Pb2VO(PO4)2 and SrZnVO(PO4)2, and we find that they have
ferromagnetic J1. The ordered moment in the collinear antiferromagnetic ground
state is reduced, and the diffuse magnetic scattering is enhanced, as the
predicted bond-nematic region of the phase diagram is approached.Comment: 4 pages, 4 figure
On the Structure of the Observable Algebra of QCD on the Lattice
The structure of the observable algebra of lattice
QCD in the Hamiltonian approach is investigated. As was shown earlier,
is isomorphic to the tensor product of a gluonic
-subalgebra, built from gauge fields and a hadronic subalgebra
constructed from gauge invariant combinations of quark fields. The gluonic
component is isomorphic to a standard CCR algebra over the group manifold
SU(3). The structure of the hadronic part, as presented in terms of a number of
generators and relations, is studied in detail. It is shown that its
irreducible representations are classified by triality. Using this, it is
proved that the hadronic algebra is isomorphic to the commutant of the triality
operator in the enveloping algebra of the Lie super algebra
(factorized by a certain ideal).Comment: 33 page
Weak Lensing Effects on the Galaxy Three-Point Correlation Function
We study the corrections to the galaxy three-point correlation function
(3PCF) induced by weak lensing magnification due to the matter distribution
along the line of sight. We consistently derive all the correction terms
arising up to second order in perturbation theory and provide analytic
expressions as well as order of magnitude estimates for their relative
importance. The magnification contributions depend on the geometry of the
projected triangle on the sky plane, and scale with different powers of the
number count slope and redshift of the galaxy sample considered. We evaluate
all terms numerically and show that, depending on the triangle configuration as
well as the galaxy sample considered, weak lensing can in general significantly
contribute to and alter the three-point correlation function observed through
galaxy and quasar catalogs.Comment: 24 pages, 11 figures; version accepted for publication in Phys. Rev.
D; v2: typos corrected, figure caption clarifie
Tunneling magnetoresistance in devices based on epitaxial NiMnSb with uniaxial anisotropy
We demonstrate tunnel magnetoresistance (TMR) junctions based on a tri layer
system consisting of an epitaxial NiMnSb, aluminum oxide and CoFe tri layer.
The junctions show a tunnelling magnetoresistance of Delta R/R of 8.7% at room
temperature which increases to 14.7% at 4.2K. The layers show clear separate
switching and a small ferromagnetic coupling. A uniaxial in plane anisotropy in
the NiMnSb layer leads to different switching characteristics depending on the
direction in which the magnetic field is applied, an effect which can be used
for sensor applications.Comment: 8 pages, 3 figures, submitted to Appl. Phys. Let
The photospheric solar oxygen project: III. Investigation of the centre-to-limb variation of the 630nm [OI]-NiI blend
The solar photospheric abundance of oxygen is still a matter of debate. For
about ten years some determinations have favoured a low oxygen abundance which
is at variance with the value inferred by helioseismology. Among the oxygen
abundance indicators, the forbidden line at 630nm has often been considered the
most reliable even though it is blended with a NiI line. In Papers I and Paper
II of this series we reported a discrepancy in the oxygen abundance derived
from the 630nm and the subordinate [OI] line at 636nm in dwarf stars, including
the Sun. Here we analyse several, in part new, solar observations of the the
centre-to-limb variation of the spectral region including the blend at 630nm in
order to separate the individual contributions of oxygen and nickel. We analyse
intensity spectra observed at different limb angles in comparison with line
formation computations performed on a CO5BOLD 3D hydrodynamical simulation of
the solar atmosphere. The oxygen abundances obtained from the forbidden line at
different limb angles are inconsistent if the commonly adopted nickel abundance
of 6.25 is assumed in our local thermodynamic equilibrium computations. With a
slightly lower nickel abundance, A(Ni)~6.1, we obtain consistent fits
indicating an oxygen abundance of A(O)=8.73+/-0.05. At this value the
discrepancy with the subordinate oxygen line remains. The derived value of the
oxygen abundance supports the notion of a rather low oxygen abundance in the
solar hotosphere. However, it is disconcerting that the forbidden oxygen lines
at 630 and 636nm give noticeably different results, and that the nickel
abundance derived here from the 630nm blend is lower than expected from other
nickel lines.Comment: to appear in A&
- …