24,155 research outputs found
Aerospace management techniques: Commercial and governmental applications
A guidebook for managers and administrators is presented as a source of useful information on new management methods in business, industry, and government. The major topics discussed include: actual and potential applications of aerospace management techniques to commercial and governmental organizations; aerospace management techniques and their use within the aerospace sector; and the aerospace sector's application of innovative management techniques
Possibility of "magic" trapping of three-level system for Rydberg blockade implementation
The Rydberg blockade mechanism has shown noteworthy promise for scalable
quantum computation with neutral atoms. Both qubit states and gate-mediating
Rydberg state belong to the same optically-trapped atom. The trapping fields,
while being essential, induce detrimental decoherence. Here we theoretically
demonstrate that this Stark-induced decoherence may be completely removed using
powerful concepts of "magic" optical traps. We analyze "magic" trapping of a
prototype three-level system: a Rydberg state along with two qubit states:
hyperfine states attached to a J=1/2 ground state. Our numerical results show
that, while such a "magic" trap for alkali metals would require prohibitively
large magnetic fields, the group IIIB metals such as Al are suitable
candidates.Comment: 5 pages, 3 figure
Aquatic Invertebrate Community Structure, Biological Condition, Habitat, and Water Quality at Ozark National Scenic Riverways, Missouri, 2005-2014
Ozark National Scenic Riverways (OZAR) was established to protect the corridor of the Current River and its major tributary, the Jacks Fork. The Current River is one of the few remaining free-flowing rivers in the U.S., with much of its base flow coming from several large springs. To assess the biological condition of these rivers, aquatic invertebrate community structure was monitored from 2005 to 2014. Benthic invertebrate samples and associated habitat and water quality data were collected from each of nine sampling sites using a Slack-Surber sampler. The Stream Condition Index (SCI), a multimetric index that incorporates taxa richness, EPT (Ephemeroptera, Plecoptera, Trichoptera) richness, Shannon’s diversity index, and Hilsenhoff Biotic Index (HBI), was calculated. The benthic invertebrate fauna was diverse with 155 distinct taxa identified from all sites. Mean taxa richness was high, ranging from 22 to 30 among sites. The invertebrate taxa of the Current River and Jacks Fork are largely intolerant across all taxa represented (mean tolerance value= ~4.25). Mean HBI did not exceed 3.9 in the Current River or 4.4 for the Jacks Fork. Mean SCI scores across sampling sites generally were well above 16, indicating they are not impaired. Habitat and water quality data were summarized, but they were poorly correlated with individual invertebrate metrics. Sørenson’s similarity index was used to assess community similarity among sites, and similarity scores were then analyzed using ascendant hierarchical cluster analysis. Similarity among sites was 72% or greater. Cluster analysis showed that Current River and Jacks Fork sites clustered separately and in a downstream progression. The uppermost collection site on the Current River was most unlike the other sites, which probably relates to the distinct physical features of that site compared to the others. Nonmetric Multidimensional Scaling (NMDS) was used to evaluate the relationship of invertebrate metrics to habitat and water quality. The NMDS model was found to be a good fit (stress=0.04) and specific conductance, temperature, discharge, filamentous algae and aquatic vegetation were among the most important habitat variables in defining the relationship among sampling sites. The three lower Current River and Jacks Fork sites each were closely grouped in ordination space, but the three upper Current River sites were farther apart from each other. The influence of several large volume springs near those sites is suspected of producing such disparity through press type disturbances. Although the invertebrate communities and water quality in the Current River and Jacks Fork are largely sound and have high biological condition, ongoing and projected threats to these resources remain, and those threats largely originate outside park jurisdictional boundaries. Inherent variability of invertebrate community diversity across sites and years highlights the importance of using multi-metric assessments and multiyear monitoring to support management decisions
Hamiltonian closures for fluid models with four moments by dimensional analysis
Fluid reductions of the Vlasov-Amp{\`e}re equations that preserve the
Hamiltonian structure of the parent kinetic model are investigated. Hamiltonian
closures using the first four moments of the Vlasov distribution are obtained,
and all closures provided by a dimensional analysis procedure for satisfying
the Jacobi identity are identified. Two Hamiltonian models emerge, for which
the explicit closures are given, along with their Poisson brackets and Casimir
invariants
Environmental effects on space shuttle reusable surface insulation coated with reaction cured glass
Sample titles of the space shuttle reusable surface insulation was subjected alternately to simulated mission heating and either real or simulated environmental exposure for up to 34 cycles. The coating cracked as a result of exposure to high temperature and moisture conditions, and insulation with cracked coatings absorbed significant quantities of water in the launch-pad environment. Cracking was a complex function of time, temperature, and moisture exposure. Cracked coatings remained adherent to the insulation for up to 24 cycles past initial cracking
Derivation of reduced two-dimensional fluid models via Dirac's theory of constrained Hamiltonian systems
We present a Hamiltonian derivation of a class of reduced plasma
two-dimensional fluid models, an example being the Charney-Hasegawa-Mima
equation. These models are obtained from the same parent Hamiltonian model,
which consists of the ion momentum equation coupled to the continuity equation,
by imposing dynamical constraints. It is shown that the Poisson bracket
associated with these reduced models is the Dirac bracket obtained from the
Poisson bracket of the parent model
Hamiltonian approach to hybrid plasma models
The Hamiltonian structures of several hybrid kinetic-fluid models are
identified explicitly, upon considering collisionless Vlasov dynamics for the
hot particles interacting with a bulk fluid. After presenting different
pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the
paper extends the treatment to account for a fluid plasma interacting with an
energetic ion species. Both current-coupling and pressure-coupling MHD schemes
are treated extensively. In particular, pressure-coupling schemes are shown to
require a transport-like term in the Vlasov kinetic equation, in order for the
Hamiltonian structure to be preserved. The last part of the paper is devoted to
studying the more general case of an energetic ion species interacting with a
neutralizing electron background (hybrid Hall-MHD). Circulation laws and
Casimir functionals are presented explicitly in each case.Comment: 27 pages, no figures. To appear in J. Phys.
Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence
Stability properties and mode signature for equilibria of a model of electron
temperature gradient (ETG) driven turbulence are investigated by Hamiltonian
techniques. After deriving the infinite families of Casimir invariants,
associated with the noncanonical Poisson bracket of the model, a sufficient
condition for stability is obtained by means of the Energy-Casimir method. Mode
signature is then investigated for linear motions about homogeneous equilibria.
Depending on the sign of the equilibrium "translated" pressure gradient, stable
equilibria can either be energy stable, i.e.\ possess definite linearized
perturbation energy (Hamiltonian), or spectrally stable with the existence of
negative energy modes (NEMs). The ETG instability is then shown to arise
through a Kre\u{\i}n-type bifurcation, due to the merging of a positive and a
negative energy mode, corresponding to two modified drift waves admitted by the
system. The Hamiltonian of the linearized system is then explicitly transformed
into normal form, which unambiguously defines mode signature. In particular,
the fast mode turns out to always be a positive energy mode (PEM), whereas the
energy of the slow mode can have either positive or negative sign
- …