9,194 research outputs found

    Handbook on Hypergolic Propellant Discharges and Disposal

    Get PDF
    The efficiency of all treatment methods formerly or currently used in treating chemical wastes is assessed with emphasis on the disposal of hypergolic propellants. Maximum focus is on the space shuttle propellants MMH and N2O4. Except for hydrogen peroxide oxidizers, all the propellants are nitrogen based and can be potentially reduced to valuable plant nutrients. In theory, all the propellants can be reduced to carbon, hydrogen, nitrogen, and oxygen, except of fuming nitric acid which contains a small amount of fluorine. Appendices cover: (1) a general design criteria for disposal ponds; (2) thermal aspects of reaction in dilute solution; (3) gas bubble growth, detachment, and rise (4) absorption scrubber fundamentals and descriptions; (5) separation of a propellant vapor from a helium stream by permeation; and (6) atmospheric emission limits

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    Viewpoint consistency in Z and LOTOS: A case study

    Get PDF
    Specification by viewpoints is advocated as a suitable method of specifying complex systems. Each viewpoint describes the envisaged system from a particular perspective, using concepts and specification languages best suited for that perspective. Inherent in any viewpoint approach is the need to check or manage the consistency of viewpoints and to show that the different viewpoints do not impose contradictory requirements. In previous work we have described a range of techniques for consistency checking, refinement, and translation between viewpoint specifications, in particular for the languages LOTOS and Z. These two languages are advocated in a particular viewpoint model, viz. that of the Open Distributed Processing (ODP) reference model. In this paper we present a case study which demonstrates how all these techniques can be combined in order to show consistency between a viewpoint specified in LOTOS and one specified in Z. Keywords: Viewpoints; Consistency; Z; LOTOS; ODP

    3D Computational Ghost Imaging

    Full text link
    Computational ghost imaging retrieves the spatial information of a scene using a single pixel detector. By projecting a series of known random patterns and measuring the back reflected intensity for each one, it is possible to reconstruct a 2D image of the scene. In this work we overcome previous limitations of computational ghost imaging and capture the 3D spatial form of an object by using several single pixel detectors in different locations. From each detector we derive a 2D image of the object that appears to be illuminated from a different direction, using only a single digital projector as illumination. Comparing the shading of the images allows the surface gradient and hence the 3D form of the object to be reconstructed. We compare our result to that obtained from a stereo- photogrammetric system utilizing multiple high resolution cameras. Our low cost approach is compatible with consumer applications and can readily be extended to non-visible wavebands.Comment: 13pages, 4figure

    Calibration of the EDGES High-Band Receiver to Observe the Global 21-cm Signature from the Epoch of Reionization

    Get PDF
    The EDGES High-Band experiment aims to detect the sky-average brightness temperature of the 2121-cm signal from the Epoch of Reionization (EoR) in the redshift range 14.8≳z≳6.514.8 \gtrsim z \gtrsim 6.5. To probe this redshifted signal, EDGES High-Band conducts single-antenna measurements in the frequency range 90−19090-190 MHz from the Murchison Radio-astronomy Observatory in Western Australia. In this paper, we describe the current strategy for calibration of the EDGES High-Band receiver and report calibration results for the instrument used in the 2015−20162015-2016 observational campaign. We propagate uncertainties in the receiver calibration measurements to the antenna temperature using a Monte Carlo approach. We define a performance objective of 11~mK residual RMS after modeling foreground subtraction from a fiducial temperature spectrum using a five-term polynomial. Most of the calibration uncertainties yield residuals of 11~mK or less at 95%95\% confidence. However, current uncertainties in the antenna and receiver reflection coefficients can lead to residuals of up to 2020 mK even in low-foreground sky regions. These dominant residuals could be reduced by 1) improving the accuracy in reflection measurements, especially their phase 2) improving the impedance match at the antenna-receiver interface, and 3) decreasing the changes with frequency of the antenna reflection phase.Comment: Updated to match version accepted by Ap
    • …
    corecore