17 research outputs found

    Detection of illicit chemicals by portable Raman spectrometer

    No full text
    The Raman spectrometers can be built as the portable devices and can be used in various places to detect illicit chemicals. This method has become popular due to deficiency of other fast methods that could be applied against terrorist attacks or could help police at their work. The Conception of a portable Raman spectrometer has been presented. The Description enclosures the presentation of the prepared device and its possible applications by presenting exemplary detection results

    Versatile aza-BODIPY-based low-bandgap conjugated small molecule for light harvesting and near-infrared photodetection

    No full text
    The versatile nature of organic conjugated materials renders their flawless integration into a diverse family of optoelectronic devices with light-harvesting, photodetection, or light-emitting capabilities. Classes of materials that offer the possibilities of two or more distinct optoelectronic functions are particularly attractive as they enable smart applications while providing the benefits of the ease of fabrication using low-cost processes. Here, we develop a novel, multi-purpose conjugated small molecule by combining boron-azadipyrromethene (aza-BODIPY) as electron acceptor with triphenylamine (TPA) as end-capping donor units. The implemented donor–acceptor–donor (D–A–D) configuration, in the form of TPA-azaBODIPY-TPA, preserves ideal charge transfer characteristics with appropriate excitation energy levels, with the additional ability to be used as either a charge transporting interlayer or light-sensing semiconducting layer in optoelectronic devices. To demonstrate its versatility, we first show that TPA-azaBODIPY-TPA can act as an excellent hole transport layer in methylammonium lead triiodide (MAPbI3)-based perovskite solar cells with measured power conversion efficiencies exceeding 17%, outperforming control solar cells with PEDOT:PSS by nearly 60%. Furthermore, the optical bandgap of 1.49 eV is shown to provide significant photodetection in the wavelength range of up to 800 nm where TPA-azaBODIPY-TPA functions as donor in near-infrared organic photodetectors (OPDs) composed of fullerene derivatives. Overall, the established versatility of TPA-azaBODIPY-TPA, combined with its robust thermal stability as well as excellent solubility and processability, provides a new guide for developing highly efficient multi-purpose electronic materials for the next-generation of smart optoelectronic devices. (Figure presented.).</p

    Noninvasive detection of concealed explosives: depth profiling through opaque plastics by time-resolved Raman spectroscopy.

    No full text
    The detection of explosives concealed behind opaque, diffusely scattering materials is a challenge that requires noninvasive analytical techniques for identification without having to manipulate the package. In this context, this study focuses on the application of time-resolved Raman spectroscopy (TRRS) with a picosecond pulsed laser and an intensified charge-coupled device (ICCD) detector for the noninvasive identification of explosive materials through several millimeters of opaque polymers or plastic packaging materials. By means of a short (250 ps) gate which can be delayed several hundred picoseconds after the laser pulse, the ICCD detector allows for the temporal discrimination between photons from the surface of a sample and those from deeper layers. TRRS was applied for the detection of the two main isomers of dinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene as well as for various other components of explosive mixtures, including akardite II, diphenylamine, and ethyl centralite. Spectra were obtained through different diffuse scattering white polymer materials: polytetrafluoroethylene (PTFE), polyoxymethylene (POM), and polyethylene (PE). Common packaging materials of various thicknesses were also selected, including polystyrene (PS) and polyvinyl chloride (PVC). With the demonstration of the ability to detect concealed, explosives-related compounds through an opaque first layer, this study may have important applications in the security and forensic fields. © 2011 American Chemical Society
    corecore