245 research outputs found
Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls
Using Gibbs ensemble Monte Carlo simulations and density functional theory we
investigate the fluid-fluid demixing transition in inhomogeneous
colloid-polymer mixtures confined between two parallel plates with separation
distances between one and ten colloid diameters covering the complete range
from quasi two-dimensional to bulk-like behavior. We use the
Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer
interactions are hard-sphere like, whilst the pair potential between polymers
vanishes. Two different types of confinement induced by a pair of parallel
walls are considered, namely either through two hard walls or through two
semi-permeable walls that repel colloids but allow polymers to freely
penetrate. For hard (semi-permeable) walls we find that the capillary binodal
is shifted towards higher (lower) polymer fugacities and lower (higher) colloid
fugacities as compared to the bulk binodal; this implies capillary condensation
(evaporation) of the colloidal liquid phase in the slit. A macroscopic
treatment is provided by a novel symmetric Kelvin equation for general binary
mixtures, based on the proximity in chemical potentials of statepoints at
capillary coexistence and the reference bulk coexistence. Results for capillary
binodals compare well with those obtained from the classic version of the
Kelvin equation due to Evans and Marini Bettolo Marconi [J. Chem. Phys. 86,
7138 (1987)], and are quantitatively accurate away from the fluid-fluid
critical point, even at small wall separations. For hard walls the density
profiles of polymers and colloids inside the slit display oscillations due to
packing effects for all statepoints. For semi-permeable walls either similar
structuring or flat profiles are found, depending on the statepoint considered.Comment: 15 pages, 13 figure
Delivery of Oncolytic Reovirus by Cell Carriers
Oncolytic virus therapy is a rapidly expanding branch of cancer immunotherapy and represents a genuine opportunity to improve currently available treatment options. However, as single agents oncolytic viruses have shown only moderate clinical benefit and many challenges remain before their full potential is realized. Central to this is the efficient delivery of the virus to the tumor site and potentiation of the antitumor immune response. This chapter describes the loading of oncolytic reovirus onto monocytes which act as carriers for delivery of the virus to the tumor site and, as antigen presenting cells, may also thereby potentiate the development of an adaptive antitumor immune response
Entropic Interactions in Suspensions of Semi-Flexible Rods: Short-Range Effects of Flexibility
We compute the entropic interactions between two colloidal spheres immersed
in a dilute suspension of semi-flexible rods. Our model treats the
semi-flexible rod as a bent rod at fixed angle, set by the rod contour and
persistence lengths. The entropic forces arising from this additional
rotational degree of freedom are captured quantitatively by the model, and
account for observations at short range in a recent experiment. Global fits to
the interaction potential data suggest the persistence length of fd-virus is
about two to three times smaller than the commonly used value of .Comment: 4 pages, 5 figures, submitted to PRE rapid communication
Combination therapy with reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses.
Oncolytic reovirus can be delivered both systemically and intratumorally, in both pre-clinical models and in early phase clinical trials. Reovirus has direct oncolytic activity against a variety of tumor types and anti-tumor activity is directly associated with immune activation by virus replication in tumors. Immune mechanisms of therapy include both innate immune activation against virally infected tumor cells, and the generation of adaptive anti-tumor immune responses as a result of in vivo priming against tumor-associated antigens. We tested the combination of local oncolytic reovirus therapy with systemic immune checkpoint inhibition. We show that treatment of subcutaneous B16 melanomas with a combination of intravenous (i.v.) anti-PD-1 antibody and intratumoral (i.t.) reovirus significantly enhanced survival of mice compared to i.t. reovirus (p<0.01) or anti-PD-1 therapy alone. In vitro immune analysis demonstrated that checkpoint inhibition improved the ability of NK cells to kill reovirus-infected tumor cells, reduced Treg activity, and increased the adaptive CD8(+) T cell dependent anti-tumor T cell response. PD-1 blockade also enhanced the anti-viral immune response but through effector mechanisms which overlapped with, but also differed from those affecting the antitumor response. Therefore, combination with checkpoint inhibition represents a readily translatable next step in the clinical development of reovirus
In situ electron microscopy techniques for nanoparticle dispersion analysis of commercial sunscreen
Nanoparticles are common active ingredients within many commercial products including sunscreen. Consequently, accurate characterisation of nanoparticles in these products is vital to enhance product design, whilst also understanding the toxicological implications of these nanoparticles. Whilst bulk techniques are useful in providing some information, they often cannot resolve individual particles, and therefore electron microscopy can be used for high-resolution nanoparticle characterisation. However, conventional high vacuum dry TEM does not accurately represent nanoparticle dispersions and other in situ methods must be used. Here, we use a combination of techniques including liquid cell transmission electron microscopy (LCTEM), cryogenic (cryo)-TEM and cryo-scanning electron microscopy (SEM) to characterise a commercial sunscreen containing titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles. Our work illustrates that whilst LCTEM does not require any sample preparation more beam artefacts can occur causing ZnO dissolution with only TiO2 nanoparticles visualised. Comparatively, cryo-TEM allows characterisation of both ZnO and TiO2, yet only cryo-SEM could be used to analyse the pure product (without dilution) but biased the characterisation to the larger fraction of nanoparticles and agglomerates. Ultimately, only with a combination of different in situ EM techniques can an accurate characterisation of commercial products be achieved in order to ensure effective and safe product design and manufacture
Can Polymer Coils be modeled as "Soft Colloids"?
We map dilute or semi-dilute solutions of non-intersecting polymer chains
onto a fluid of ``soft'' particles interacting via a concentration dependent
effective pair potential, by inverting the pair distribution function of the
centers of mass of the initial polymer chains. A similar inversion is used to
derive an effective wall-polymer potential; these potentials are combined to
successfully reproduce the calculated exact depletion interaction induced by
non-intersecting polymers between two walls. The mapping opens up the
possibility of large-scale simulations of polymer solutions in complex
geometries.Comment: 4 pages, 3 figures ReVTeX[epsfig,multicol,amssymb] references update
Universal law of fractionation for slightly polydisperse systems
By perturbing about a general monodisperse system, we provide a complete description of two-phase equilibria in any system which is slightly polydisperse in some property (e.g., particle size, charge, etc.). We derive a universal law of fractionation which is corroborated by comprehensive experiments on a model colloid-polymer mixture. We furthermore predict that phase separation is an effective method of reducing polydispersity only for systems with a skewed distribution of the polydisperse property
Effective Interactions and Volume Energies in Charged Colloids: Linear Response Theory
Interparticle interactions in charge-stabilized colloidal suspensions, of
arbitrary salt concentration, are described at the level of effective
interactions in an equivalent one-component system. Integrating out from the
partition function the degrees of freedom of all microions, and assuming linear
response to the macroion charges, general expressions are obtained for both an
effective electrostatic pair interaction and an associated microion volume
energy. For macroions with hard-sphere cores, the effective interaction is of
the DLVO screened-Coulomb form, but with a modified screening constant that
incorporates excluded volume effects. The volume energy -- a natural
consequence of the one-component reduction -- contributes to the total free
energy and can significantly influence thermodynamic properties in the limit of
low-salt concentration. As illustrations, the osmotic pressure and bulk modulus
are computed and compared with recent experimental measurements for deionized
suspensions. For macroions of sufficient charge and concentration, it is shown
that the counterions can act to soften or destabilize colloidal crystals.Comment: 14 pages, including 3 figure
Hard Spheres in Vesicles: Curvature-Induced Forces and Particle-Induced Curvature
We explore the interplay of membrane curvature and nonspecific binding due to
excluded-volume effects among colloidal particles inside lipid bilayer
vesicles. We trapped submicron spheres of two different sizes inside a
pear-shaped, multilamellar vesicle and found the larger spheres to be pinned to
the vesicle's surface and pushed in the direction of increasing curvature. A
simple model predicts that hard spheres can induce shape changes in flexible
vesicles. The results demonstrate an important relationship between the shape
of a vesicle or pore and the arrangement of particles within it.Comment: LaTeX with epsfig; ps available at
http://dept.physics.upenn.edu/~nelson/index.shtml Phys Rev Lett in press
(1997
- …