344 research outputs found

    Enumeration of self-avoiding walks on the square lattice

    Full text link
    We describe a new algorithm for the enumeration of self-avoiding walks on the square lattice. Using up to 128 processors on a HP Alpha server cluster we have enumerated the number of self-avoiding walks on the square lattice to length 71. Series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and mean-square distance of monomers from the end points have been derived to length 59. Analysis of the resulting series yields accurate estimates of the critical exponents γ\gamma and ν\nu confirming predictions of their exact values. Likewise we obtain accurate amplitude estimates yielding precise values for certain universal amplitude combinations. Finally we report on an analysis giving compelling evidence that the leading non-analytic correction-to-scaling exponent Δ1=3/2\Delta_1=3/2.Comment: 24 pages, 6 figure

    Self-avoiding walks and polygons on the triangular lattice

    Full text link
    We use new algorithms, based on the finite lattice method of series expansion, to extend the enumeration of self-avoiding walks and polygons on the triangular lattice to length 40 and 60, respectively. For self-avoiding walks to length 40 we also calculate series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and the mean-square distance of a monomer from the end points. For self-avoiding polygons to length 58 we calculate series for the mean-square radius of gyration and the first 10 moments of the area. Analysis of the series yields accurate estimates for the connective constant of triangular self-avoiding walks, μ=4.150797226(26)\mu=4.150797226(26), and confirms to a high degree of accuracy several theoretical predictions for universal critical exponents and amplitude combinations.Comment: 24 pages, 6 figure

    Honeycomb lattice polygons and walks as a test of series analysis techniques

    Full text link
    We have calculated long series expansions for self-avoiding walks and polygons on the honeycomb lattice, including series for metric properties such as mean-squared radius of gyration as well as series for moments of the area-distribution for polygons. Analysis of the series yields accurate estimates for the connective constant, critical exponents and amplitudes of honeycomb self-avoiding walks and polygons. The results from the numerical analysis agree to a high degree of accuracy with theoretical predictions for these quantities.Comment: 16 pages, 9 figures, jpconf style files. Presented at the conference "Counting Complexity: An international workshop on statistical mechanics and combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda

    A General Limitation on Monte Carlo Algorithms of Metropolis Type

    Full text link
    We prove that for any Monte Carlo algorithm of Metropolis type, the autocorrelation time of a suitable ``energy''-like observable is bounded below by a multiple of the corresponding ``specific heat''. This bound does not depend on whether the proposed moves are local or non-local; it depends only on the distance between the desired probability distribution π\pi and the probability distribution π(0)\pi^{(0)} for which the proposal matrix satisfies detailed balance. We show, with several examples, that this result is particularly powerful when applied to non-local algorithms.Comment: 8 pages, LaTeX plus subeqnarray.sty (included at end), NYU-TH-93/07/01, IFUP-TH33/9

    Random Walks with Long-Range Self-Repulsion on Proper Time

    Full text link
    We introduce a model of self-repelling random walks where the short-range interaction between two elements of the chain decreases as a power of the difference in proper time. Analytic results on the exponent ν\nu are obtained. They are in good agreement with Monte Carlo simulations in two dimensions. A numerical study of the scaling functions and of the efficiency of the algorithm is also presented.Comment: 25 pages latex, 4 postscript figures, uses epsf.sty (all included) IFUP-Th 13/92 and SNS 14/9

    Replica field theory and renormalization group for the Ising spin glass in an external magnetic field

    Full text link
    We use the generic replica symmetric cubic field-theory to study the transition of short range Ising spin glasses in a magnetic field around the upper critical dimension, d=6. A novel fixed-point is found, in addition to the well-known zero magnetic field fixed-point, from the application of the renormalization group. In the spin glass limit, n going to 0, this fixed-point governs the critical behaviour of a class of systems characterised by a single cubic interaction parameter. For this universality class, the spin glass susceptibility diverges at criticality, whereas the longitudinal mode remains massive. The third mode, the so-called anomalous one, however, behaves unusually, having a jump at criticality. The physical consequences of this unusual behaviour are discussed, and a comparison with the conventional de Almeida-Thouless scenario presented.Comment: 5 pages written in revtex4. Accepted for publication in Phys. Rev. Let

    Improvement of radiopurity level of enriched 116^{116}CdWO4_4 and ZnWO4_4 crystal scintillators by recrystallization

    Get PDF
    As low as possible radioactive contamination of a detector plays a crucial role to improve sensitivity of a double beta decay experiment. The radioactive contamination of a sample of 116^{116}CdWO4_4 crystal scintillator by thorium was reduced by a factor 10\approx 10, down to the level 0.01 mBq/kg (228^{228}Th), by exploiting the recrystallization procedure. The total alpha activity of uranium and thorium daughters was reduced by a factor 3\approx 3, down to 1.6 mBq/kg. No change in the specific activity (the total α\alpha activity and 228^{228}Th) was observed in a sample of ZnWO4_4 crystal produced by recrystallization after removing 0.4\approx 0.4 mm surface layer of the crystal.Comment: 14 pages, 5 figures and 2 table

    Universal Amplitude Combinations for Self-Avoiding Walks, Polygons and Trails

    Full text link
    We give exact relations for a number of amplitude combinations that occur in the study of self-avoiding walks, polygons and lattice trails. In particular, we elucidate the lattice-dependent factors which occur in those combinations which are otherwise universal, show how these are modified for oriented lattices, and give new results for amplitude ratios involving even moments of the area of polygons. We also survey numerical results for a wide range of amplitudes on a number of oriented and regular lattices, and provide some new ones.Comment: 20 pages, NI 92016, OUTP 92-54S, UCSBTH-92-5

    Zero Temperature Properties of RNA Secondary Structures

    Full text link
    We analyze different microscopic RNA models at zero temperature. We discuss both the most simple model, that suffers a large degeneracy of the ground state, and models in which the degeneracy has been remove, in a more or less severe manner. We calculate low-energy density of states using a coupling perturbing method, where the ground state of a modified Hamiltonian, that repels the original ground state, is determined. We evaluate scaling exponents starting from measurements of overlaps and energy differences. In the case of models without accidental degeneracy of the ground state we are able to clearly establish the existence of a glassy phase with θ1/3\theta \simeq 1/3.Comment: 20 pages including 9 eps figure

    Off-equilibrium fluctuation-dissipation relations in the 3d Ising Spin Glass in a magnetic field

    Get PDF
    We study the fluctuation-dissipation relations for a three dimensional Ising spin glass in a magnetic field both in the high temperature phase as well as in the low temperature one. In the region of times simulated we have found that our results support a picture of the low temperature phase with broken replica symmetry, but a droplet behavior can not be completely excluded.Comment: 9 pages, 11 ps figures, revtex. Final version to be published in Phys. Rev.
    corecore