6,430 research outputs found

    Time-dependent quantum Monte Carlo: preparation of the ground state

    Full text link
    We study one-dimensional (1D) and two-dimensional (2D) Helium atoms using a new time-dependent quantum Monte Carlo (TDQMC) method. The TDQMC method employs random walkers, with a separate guiding wave attached to each walker. The ground state is calculated by a self-consistent solution of complex-time Schroedinger equations for the guiding waves and of equations for the velocity fields of the walkers. Our results show that the many-body wavefunction and the ground state energy of the model atoms are very close to those predicted by the standard diffusion quantum Monte Carlo method. The obtained ground state can further be used to examine correlated time-dependent processes which include, for example, interaction of atoms and molecules with external electromagnetic fields.Comment: 9 pages, 5 figure

    Pressure of thermal excitations in superfluid helium

    Full text link
    We find the pressure, due to the thermal excitations of superfluid helium, at the interface with a solid. The separate contributions of phonons, RR^- rotons and R+R^+ rotons are derived. The pressure due to RR^- rotons is shown to be negative and partially compensates the positive contribution of R+R^+ rotons, so the total roton pressure is positive but several times less than the separate RR^- and R+R^+ roton contributions. The pressure of the quasiparticle gas is shown to account for the fountain effect in HeIIHeI I. An experiment is proposed to observe the negative pressure due to RR^- rotons.Comment: 14 pages, 4 figure

    Debris disk size distributions: steady state collisional evolution with P-R drag and other loss processes

    Full text link
    We present a new scheme for determining the shape of the size distribution, and its evolution, for collisional cascades of planetesimals undergoing destructive collisions and loss processes like Poynting-Robertson drag. The scheme treats the steady state portion of the cascade by equating mass loss and gain in each size bin; the smallest particles are expected to reach steady state on their collision timescale, while larger particles retain their primordial distribution. For collision-dominated disks, steady state means that mass loss rates in logarithmic size bins are independent of size. This prescription reproduces the expected two phase size distribution, with ripples above the blow-out size, and above the transition to gravity-dominated planetesimal strength. The scheme also reproduces the expected evolution of disk mass, and of dust mass, but is computationally much faster than evolving distributions forward in time. For low-mass disks, P-R drag causes a turnover at small sizes to a size distribution that is set by the redistribution function (the mass distribution of fragments produced in collisions). Thus information about the redistribution function may be recovered by measuring the size distribution of particles undergoing loss by P-R drag, such as that traced by particles accreted onto Earth. Although cross-sectional area drops with 1/age^2 in the PR-dominated regime, dust mass falls as 1/age^2.8, underlining the importance of understanding which particle sizes contribute to an observation when considering how disk detectability evolves. Other loss processes are readily incorporated; we also discuss generalised power law loss rates, dynamical depletion, realistic radiation forces and stellar wind drag.Comment: Accepted for publication by Celestial Mechanics and Dynamical Astronomy (special issue on EXOPLANETS

    Are inner disc misalignments common? ALMA reveals an isotropic outer disc inclination distribution for young dipper stars

    Get PDF
    Dippers are a common class of young variable star exhibiting day-long dimmings with depths of up to several tens of per cent. A standard explanation is that dippers host nearly edge-on (id ≈ 70°) protoplanetary discs that allow close-in (10 au) disc resolved by ALMA and that inner disc misalignments may be common during the protoplanetary phase. More than one mechanism may contribute to the dipper phenomenon, including accretion-driven warps and ‘broken’ discs caused by inclined (sub-)stellar or planetary companions

    Evolution of a pulse of noninteracting quasiparticles with dispersion and initial angular width

    Get PDF
    The evolution of a pulse of noninteracting quasiparticles, caused by their different velocities and angular distribution of momenta, is studied theoretically. Equations are found that describe the shape of the pulse surface at any time. The time of the beginning, end and duration of the density of the quasiparticle energy flux is determined at a general spatial point. The quasiparticle energy density is considered at all times and positions, and it is shown that the region of high energy density, in the middle of the pulse, is equal to the initial energy density under certain conditions. These theoretical results are discussed in relation to experimental data on the evolution of a pulse of noninteracting phonons in superfluid helium

    An economic evaluation of schizophrenia–1991

    Get PDF
    In 1991, the costs for schizophrenia, which has a lifetime prevalence of 1.5% among adult Americans, totaled 65billion.Costswerebrokendownintotheirdirectandindirectcomponents.Directcosts,whichtotaled65 billion. Costs were broken down into their direct and indirect components. Direct costs, which totaled 19 billion dollars, consisted of treatment-related expenditures such as those for inpatients and outpatients, as well as nontreatment-related expenditures such as those for the criminal justice system used by individuals with schizophrenia. The direct costs were fairly similar to those of other recent estimates of the cost of schizophrenia. Indirect costs, which were 46billiondollars,includedthelostproductivityofbothwageearners(46 billion dollars, included the lost productivity of both wage earners (24 billion) and homemakers (4.5billion),individualswhowereininstitutions(4.5 billion), individuals who were in institutions (4.5 billion) or who had committed suicide (7billion),andcaregiverswhotookcareofschizophrenicfamilymembers(7 billion), and caregivers who took care of schizophrenic family members (7 billion). Our method for calculating the indirect costs was slightly different than methods used in prior studies, which may account for our estimates being higher. The method for determining each expenditure is provided, and the implications of these staggering costs are discussed

    Bohmian trajectories and the Path Integral Paradigm. Complexified Lagrangian Mechanics

    Full text link
    David Bohm shown that the Schr{\"o}dinger equation, that is a "visiting card" of quantum mechanics, can be decomposed onto two equations for real functions - action and probability density. The first equation is the Hamilton-Jacobi (HJ) equation, a "visiting card" of classical mechanics, to be modified by the Bohmian quantum potential. And the second is the continuity equation. The latter can be transformed to the entropy balance equation. The Bohmian quantum potential is transformed to two Bohmian quantum correctors. The first corrector modifies kinetic energy term of the HJ equation, and the second one modifies potential energy term. Unification of the quantum HJ equation and the entropy balance equation gives complexified HJ equation containing complex kinetic and potential terms. Imaginary parts of these terms have order of smallness about the Planck constant. The Bohmian quantum corrector is indispensable term modifying the Feynman's path integral by expanding coordinates and momenta to imaginary sector.Comment: 14 pages, 3 figures, 46 references, 48 equation
    corecore