5 research outputs found

    Optimization of the width of the transportation corridor of tractor trains for agricultural purpose

    No full text
    The main works related to the production and transportation of crop production take place in the Amur region in conditions when the surface of the movement has a weak carrying capacity, which imposes additional requirements on transport units to increase their traction-chain properties.So the issue of exporting crop products from the fields is important and relevant both for peasant farms (PF) and for private farms. The use of multi-link tractor trains (MTU) in the region is limited by a significant deterrent, such as the increase in the width of the transport corridor in turns. Why the issue of increasing the efficiency of the ICC should be considered both in the direction of increasing traction-chain properties, and at the same time optimizing the width of the transport corridor when it moves. The proposed article provides theoretical, experimental research and experience with the use of the designer and scientific novelty, designed to enhance traction-clutch properties and reduce the width of the MTU corridor in an arbitrary turn

    IA-PACS-CFS: a double-blinded, randomized, sham-controlled, exploratory trial of immunoadsorption in patients with chronic fatigue syndrome (CFS) including patients with post-acute COVID-19 CFS (PACS-CFS)

    Get PDF
    BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severely debilitating condition which markedly restricts activity and function of affected people. Since the beginning of the COVID-19 pandemic ME/CFS related to post-acute COVID-19 syndrome (PACS) can be diagnosed in a subset of patients presenting with persistent fatigue 6 months after a mostly mild SARS-CoV-2 infection by fulfillment of the Canadian Consensus Criteria (CCC 2003). Induction of autoimmunity after viral infection is a mechanism under intensive investigation. In patients with ME/CFS, autoantibodies against thyreoperoxidase (TPO), beta-adrenergic receptors (ß2AR), and muscarinic acetylcholine receptors (MAR) are frequently found, and there is evidence for effectiveness of immunomodulation with B cell depleting therapy, cyclophosphamide, or intravenous immunoglobulins (IVIG). Preliminary studies on the treatment of ME/CFS patients with immunoadsorption (IA), an apheresis that removes antibodies from plasma, suggest clinical improvement. However, evidence from placebo-controlled trials is currently missing. METHODS: In this double-blinded, randomized, sham-controlled, exploratory trial the therapeutic effect of five cycles of IA every other day in patients with ME/CFS, including patients with post-acute COVID-19 chronic fatigue syndrome (PACS-CFS), will be evaluated using the validated Chalder Fatigue Scale, a patient-reported outcome measurement. A total of 66 patients will be randomized at a 2:1 ratio: 44 patients will receive IA (active treatment group) and 22 patients will receive a sham apheresis (control group). Moreover, safety, tolerability, and the effect of IA on patient-reported outcome parameters, biomarker-related objectives, cognitive outcome measurements, and physical parameters will be assessed. Patients will be hospitalized at the clinical site from day 1 to day 10 to receive five IA treatments and medical visits. Four follow-up visits (including two visits at site and two visits via telephone call) at month 1 (day 30), 2 (day 60), 4 (day 120), and 6 (day 180; EOS, end of study visit) will take place. DISCUSSION: Although ME/CFS including PACS-CFS causes an immense individual, social, and economic burden, we lack efficient therapeutic options. The present study aims to investigate the efficacy of immunoadsorption and to contribute to the etiological understanding and establishment of diagnostic tools for ME/CFS

    Wheat curl mite, Aceria tosichella, and transmitted viruses: an expanding pest complex affecting cereal crops

    No full text
    The wheat curl mite (WCM), Aceria tosichella, and the plant viruses it transmits represent an invasive mite-virus complex that has affected cereal crops worldwide. The main damage caused by WCM comes from its ability to transmit and spread multiple damaging viruses to cereal crops, with Wheat streak mosaic virus (WSMV) and Wheat mosaic virus (WMoV) being the most important. Although WCM and transmitted viruses have been of concern to cereal growers and researchers for at least six decades, they continue to represent a challenge. In older affected areas, for example in North America, this mite-virus complex still has significant economic impact. In Australia and South America, where this problem has only emerged in the last decade, it represents a new threat to winter cereal production. The difficulties encountered in making progress towards managing WCM and its transmitted viruses stem from the complexity of the pathosystem. The most effective methods for minimizing losses from WCM transmitted viruses in cereal crops have previously focused on cultural and plant resistance methods. This paper brings together information on biological and ecological aspects of WCM, including its taxonomic status, occurrence, host plant range, damage symptoms and economic impact. Information about the main viruses transmitted by WCM is also included and the epidemiological relationships involved in this vectored complex of viruses are also addressed. Management strategies that have been directed at this mite-virus complex are presented, including plant resistance, its history, difficulties and advances. Current research perspectives to address this invasive mite-virus complex and minimize cereal crop losses worldwide are also discussed.Instituto de Patología VegetalFil: Navia, Denise. Embrapa Recursos Genéticos e Biotecnologia; BrasilFil: Mendonça, Renata Santos de. Embrapa Recursos Genéticos e Biotecnologia; BrasilFil: Skoracka, Anna. Adam Mickiewicz University. Faculty of Biology. Institute of Environmental Biology. Department of Animal Taxonomy and Ecology; PoloniaFil: Szydło, Wiktoria. Adam Mickiewicz University. Faculty of Biology. Institute of Environmental Biology. Department of Animal Taxonomy and Ecology; PoloniaFil: Knihinicki, Danuta. Orange Agricultural Institute. Agricultural Scientific Collections Unit. NSW Department of Primary Industries; AustraliaFil: Hein, Gary L. University of Nebraska at Lincoln; Estados UnidosFil: Pereira, Paulo Roberto Valle da Silva. Embrapa Trigo; BrasilFil: Truol, Graciela Ana Maria. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Lau, Douglas. Embrapa Trigo; Brasi
    corecore