3,037 research outputs found

    Equivalence of the Beta-function of the Variational Approach to that of QCD

    Full text link
    The variational ansatz for the ground state wavefunctional of QCD is found to capture the anti-screening behaviour that contributes the dominant `-4' to the beta-function and leads to asymptotic freedom. By considering an SU(N) purely gauge theory in the Hamiltonian formalism and choosing the Coulomb gauge, the origins of all screening and anti-screening contributions in gluon processes are found in terms of the physical degrees of freedom. The overwhelming anti- screening contribution of `-4' is seen to originate in the renormalisation of a Coulomb interaction by a transverse gluon. The lesser screening contribution of `1/3' is seen to originate in processes involving transverse gluon interactions. It is thus apparent how the variational ansatz must be developed to capture the full running of the QCD coupling constant.Comment: 35 pages, 11 figures, LaTe

    A variational approach to the QCD wavefunctional: Calculation of the QCD beta-function

    Full text link
    The beta-function is calculated for an SU(N) Yang-Mills theory from an ansatz for the vacuum wavefunctional. Direct comparison is made with the results of calculations of the beta-function of QCD. In both cases the theories are asymptotically free. The only difference being in the numerical coefficient of the beta-function, which is found to be -4 from the ansatz and -4+1/3 from other QCD calculations. This is because, due to the constraint of Gauss' law applied to the wavefunctional, transverse gluons (which contribute the 1/3) are omitted. The renormalisation procedure is understood in terms of `tadpole' and `horse-shoe' Feynman diagrams which must be interpreted with a non-local propagator.Comment: 23 pages, LaTex, 2 fig

    Current fluctuations in a spin filter with paramagnetic impurities

    Full text link
    We analyze the frequency dependence of shot noise in a spin filter consisting of a normal grain and ferromagnetic electrodes separated by tunnel barriers. The source of frequency-dependent noise is random spin-flip electron scattering that results from spin-orbit interaction and magnetic impurities. Though the latter mechanism does not contribute to the average current, it contributes to the noise and leads to its dispersion at frequencies of the order of the Korringa relaxation rate. Under nonequilibrium conditions, this rate is proportional to the applied bias VV, but parametrically smaller than eV/eV/\hbar.Comment: 6 pages, 2 figure

    Statistics of fluctuations for two types of crossover: from ballistic to diffusive regime and from orthogonal to unitary ensemble

    Full text link
    In our previous publication [Kogan et al, Phys. Rev. {\bf 48}, 9404 (1993)] we considered the issue of statistics of radiation diffusively propagating in a disordered medium. The consideration was in the framework of diagrammatic techniques and a new representation for the intensity distribution function in terms of connected diagrams only was proposed. Here we use similar approach to treat the issue of statistics in the regime of the crossover between ballistic and diffusive transport. We find that even small contribution from coherent component decreases by one half the intensity distribution function for small values of intensity and also produces oscillations of the distribution function. We also apply this method to study statistics of fluctuations of wave functions of chaotic electrons in a quantum dot in an arbitrary magnetic field, by calculating the single state local density in the regime of the crossover between the orthogonal and unitary ensemble.Comment: Revtex, 3 pages + 2 ps.figures in uuencoded file, a version which clarifies and unites the results of two previous submission

    String Thermodynamics in D-Brane Backgrounds

    Get PDF
    We discuss the thermal properties of string gases propagating in various D-brane backgrounds in the weak-coupling limit, and at temperatures close to the Hagedorn temperature. We determine, in the canonical ensemble, whether the Hagedorn temperature is limiting or non-limiting. This depends on the dimensionality of the D-brane, and the size of the compact dimensions. We find that in many cases the non-limiting behaviour manifest in the canonical ensemble is modified to a limiting behaviour in the microcanonical ensemble and show that, when there are different systems in thermal contact, the energy flows into open strings on the `limiting' D-branes of largest dimensionality. Such energy densities may eventually exceed the D-brane intrinsic tension. We discuss possible implications of this for the survival of Dp-branes with large values of p in an early cosmological Hagedorn regime. We also discuss the general phase diagram of the interacting theory, as implied by the holographic and black-hole/string correspondence principles.Comment: 50 pages, LaTeX, 4 eps figures. Added discussion of random walk picture. Corrected technical error in the treatment of ND strings (notice some formulas are rewritten). Conclusions unchange

    Some Thermodynamical Aspects of String Theory

    Get PDF
    Thermodynamical aspects of string theory are reviewed and discussed.Comment: 22 Pages plain latex; based on contributions to Golfand Memorial Volume and Englertfest by E.Rabinovic

    Interquark Potential in Schrodinger Representation

    Get PDF
    Static charges are introduced in Yang-Mills theory via coupling to heavy fermions. The states containing static color charges are constructed using integration over gauge transformations. A functional representation for interquark potential is obtained. This representation provides a simple criterion for confinement.Comment: 9pp., Late

    Thermal Duality and Hagedorn Transition from p-adic Strings

    Full text link
    We develop the finite temperature theory of p-adic string models. We find that the thermal properties of these non-local field theories can be interpreted either as contributions of standard thermal modes with energies proportional to the temperature, or inverse thermal modes with energies proportional to the inverse of the temperature, leading to a "thermal duality" at leading order (genus one) analogous to the well known T-duality of string theory. The p-adic strings also recover the asymptotic limits (high and low temperature) for arbitrary genus that purely stringy calculations have yielded. We also discuss our findings surrounding the nature of the Hagedorn transition.Comment: 4 pages and 4 figure

    Three-Dimensional Gravity and String Ghosts

    Full text link
    It is known that much of the structure of string theory can be derived from three-dimensional topological field theory and gravity. We show here that, at least for simple topologies, the string diffeomorphism ghosts can also be explained in terms of three-dimensional physics.Comment: 6 page
    corecore