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1. Introduction and background

Models in which the particle spectrum has the Hagedorn form [1],

ρ(m) ∼ ma ebm (1.1)

are of great interest because of their thermodynamic properties. For example, for

a < −5/2 (in four dimensions) and, at sufficient energy density, a system like this
has a negative specific heat. Thermodynamic quantities are not extensive and two

such sytems cannot establish an equilibrium [2].
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This type of spectrum first arose in the context of statistical bootstrap mod-

els [1, 3] and, for hadrons, such behaviour indicates that they are composed of more

fundamental constituents [4]. In fundamental string theories we find the same kind

of spectrum [5, 6, 7, 8], and a search for hints to the existence of ‘string constituents’

is of great interest.

On a more practical level, regimes of Hagedorn behaviour of weakly-coupled

strings are interesting in the context of stringy cosmological models [7]. In particular,

there has been much work recently in models where the string scale can be signifi-

cantly lower than the Planck scale [9], perhaps even as low as the TeV scale [11, 12].1

These models involve string theory in backgrounds in which the gauge sector is con-

fined to extended topological defects (branes) of various kinds. Particularly tractable

are models constructed with Dirichlet p-branes [13]. The visible universe could, for

example, correspond to a D3-brane, and the cosmological behaviour of such systems

is only beginning to be studied [11, 12, 14].

In this paper we study various aspects of the thermodynamics of fundamental

strings in backgrounds with webs of intersecting D-branes. For any particular brane

structure (i.e. number and spatial arrangement of the D-branes), there are open

strings in different sectors, labeled by the D-brane sets to which they are attached,

as well as closed strings propagating in the bulk. We determine the thermody-

namic properties of the different D-brane sectors at energy densities larger than the

fundamental string scale, to leading order in string perturbation theory, and pay-

ing special attention to the dependence on the various T-moduli (volumes). For

early work on various aspects of Hagedorn behaviour with D-branes see for exam-

ple [15, 16, 17, 18, 19].

One particularly interesting fact is that for ordinary ten-dimensional superstrings

(including the heterotic) the closed-string sector has a Hagedorn temperature which

is ‘non-limiting’ (in that it requires a finite amount of energy to reach it, in the

description provided by the canonical ensemble), whilst Type-I open strings have a

‘limiting’ Hagedorn temperature [5, 12]. It was pointed out recently in ref. [19] that

open-string sectors in Dp-branes show ‘limiting’ behaviour provided p ≥ 5. On the
other hand, for p < 5, open strings seem to show ‘non-limiting’ behaviour, similar

to that of closed strings. It should be noted that different sectors have the same

Hagedorn temperature in perturbation theory, since the critical behaviour can be

related to the onset of infrared divergences due to a closed -string state becoming

massless at the Hagedorn temperature [20, 21]. Provided this ‘tachyonic’ closed-

string state couples to all D-branes, all the topologically distinct open-string sectors

will share the same critical temperature.

We begin our discussion in section 2 by calculating the canonical (single-string)

density of states of an open string propagating in various D-brane backgrounds. In

1Models with closed-string winding modes at the TeV scale were proposed in [10].
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particular we generalize the analysis to the case where the dimensions are large but

compact and pay special attention to whether the Hagedorn temperature appears to

be ‘limiting’ or ‘non-limiting’. When dealing with finite and large dimensions, the ex-

perience with closed strings (cf. [8]) tells us that the thermodynamic properties ought

to change as the energy is raised through ‘thresholds’. These thresholds correspond

to the string being able to ‘feel’ extra dimensions by producing winding or heavy mo-

mentum modes and we shall find that this is indeed the case with open strings. Any

dependence on the finite size of extra dimensions is of particular interest because phe-

nomenologically viable D-brane scenarios typically require large compact dimensions

in order to explain why the weak scale is so much lower than the Planck scale.

In section 3 we derive the thermodynamic properties in the microcanonical en-

semble. As with closed strings, this analysis is required once the canonical ensemble

exhibits esoteric features such as supposedly negative specific heat, and leads to a

better understanding of the thermodynamic properties. The more limited informa-

tion encoded in the free energy (the canonical ensemble) concerning the properties

of non-limiting strings is greatly enhanced by studying the microcanonical ensemble.

Most importantly the universal presence of gravity in any string system means

that the infinite volume limit (the thermodynamic limit) at finite energy density does

not exist in a strict sense, due to the Jeans instability [22, 21], and the holographic

bound [23]. Thus, consistency requires working in finite volume, and investigating

whether there are regimes of approximate thermodynamic behaviour for each indi-

vidual case.

To do this, we shall work in the simplest finite-volume backgrounds, i.e. toroidal

compactifications. For closed strings in the ideal-gas approximation, it was found

in [7, 8] that winding modes tend to work in favour of positive specific heat. Indeed, if

winding modes carry a sizeable proportion of the energy, a superficially non-limiting

behaviour according to the canonical ensemble may turn into a limiting behaviour

in the true microcanonical analysis.

We find many examples of this phenomenon in the brane backgrounds. As

the microcanonical discussion can be rather technical, it is worth previewing the

resulting physical picture. Imagine heating up open-string excitations on a thermally

isolated D-brane wrapped on a finite-volume torus. Consider a Dp-brane for which

the canonical ensemble predicts a non-limiting behaviour. Eventually the critical

Hagedorn energy density is reached on the brane and open strings begin looping

into the bulk volume although their ends must stay attached to the brane. The

D-brane is now surrounded by an open-string cloud which spreads as we raise the

temperature. At some point a few energetic strings emerge and, as we raise the

temperature still further, the spectrum of a canonically non-limiting open-string

system becomes resolved into a peak of low-energy excitations and a few energetic

excitations which carry most of the energy. Eventually these modes are able to

wind in the Dirichlet directions and their number grows rapidly once they start
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winding. The thermal properties begin to resemble those of the system in a small,

totally compact volume. As we approach the Hagedorn temperature, the specific

heat increases dramatically, and we find that we cannot supply enough energy to

raise the temperature to the Hagedorn temperature. The limiting behaviour has

been restored.

In the more general multibrane configurations there are several types of open

strings depending on how these strings stretch between branes attached at their

end-points. We calculate the entropy for each such class. We find that the critical

behaviour is very similar in all open-string sectors.

The thermal interaction of two or more Hagedorn systems then follows directly

(in section 4) from the microcanonical discussion and turns out to be quite unusual.

In particular, we will show that systems which are ‘non-limiting’ tend to give their

energy up to ‘limiting’ systems. Thus if we take our previously isolated D-brane

and place it in a bath of closed strings, the energy of the former increases in the

manner described above, almost without limit. This curious and possibly violent

disequilibrium is due to differently diverging specific heats and is reminiscent of

systems with negative specific heat (although we stress that most specific heats are

found to be positive below the Hagedorn temperature).

We then speculate on how such a process might end. We suggest that eventually

the energy density of the open-string gas becomes greater than the D-brane tension.

At this point the system is unstable towards the thermal nucleation of D-brane-

antiD-brane pairs of various dimensions and topological structures. We make some

estimates of the production rate under the assumption that the brane-antibrane pairs

form a dilute plasma.

Finally, in section 5, we suggest a phase diagram including the effects of string

interactions. Most notably, we use the correspondence principle of [24] to derive

high-energy generalizations of previously studied phase diagrams in the context of

the SYM/AdS correspondence [25, 26, 19, 36]. It is suggested that, at weak string

coupling, the Hagedorn regime is always bounded by a black-hole-dominated phase,

which subsequently saturates the holographic bound [23]. Indeed, black holes seem

to emerge quite often when the Hagedorn regime is probed [6, 27, 28, 24, 19].

2. The canonical ensemble in the presence of D-branes

We shall consider models of Type-II strings on tori, with a number of D-branes

wrapped in a possibly complicated intersection pattern, together with orientifold

planes ensuring the appropriate cancellation of tadpoles and anomalies.

In addition to the closed strings propagating in the bulk, we have different sectors

of open strings, defined by the classes of branes to which they are attached. A given

class of open strings will be labeled (p, q) if they connect a Dp-brane and a Dq-

brane. The relative orientation of the branes is in principle arbitrary, although we
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will only consider supersymmetric intersections, i.e. those for which the (p, q) strings

propagating along the intersection submanifold have a supersymmetric ground state.

Each (p, q) system is characterized by a different partition of the 10 space-

time dimensions into Neumann-Neumann (NN), Dirichlet-Dirichlet (DD), or mixed

(Dirichlet-Neumann (DN) plus Neumann-Dirichlet (ND)):

10 = dNN + dDD + dND + dDN , (2.1)

where dND + dNN = p+1 and dDN + dNN = q+ 1. Accordingly, we denote the radii

of the torus in these directions by RNN , RDD, RND and RDN (some of which could

be infinite). Notice that this labeling of the torus radii depends on the particular

(p, q) system of open strings we focus on.

The total number of directions with mixed boundary conditions for a given (p, q)

system is denoted by

ν ≡ dND + dDN , (2.2)

and for a supersymmetric intersection it must take values

ν = 0 (mod 4) . (2.3)

The simplest case of ν = 0 corresponds to parallel branes. Intersections with ν = 4

are all Dp-D(p+4) systems and their T-duals. Finally, a prototype of ν = 8 system is

the D0-D8 intersection and all T-duals. So, for example a Type-I model with wrapped

D5- and D1-branes contains closed strings and open strings in all ν = 0, 4, 8 sectors.

We always assume that the system is at weak coupling so that the mass of

the D-branes is large and perturbation theory around the D-brane background is

a good approximation. In particular in this limit we can neglect brane creation in

the vacuum and can neglect the effects of perturbations of the brane itself on the

thermodynamics. In later sections we discuss the meaning of this assumption in more

detail, and in particular the thermodynamic systems in which it might be expected

to break down.

One additional point. For calculations in purely perturbative closed-string theo-

ries, an important question was whether to take winding number and momentum to

be conserved in the compact dimensions. Indeed, the thermodynamic properties are

typically found to be qualitatively different if these quantum numbers are conserved.

In this paper we are ultimately interested in the thermodynamic properties of two or

more systems in equilibrium in a D-brane background. Hence in all of our calcula-

tions we do not conserve winding number or momentum in the compact dimensions,

since for example D-branes can absorb and emit momentum, and winding number

can be transferred from a gas of open strings on the brane to a gas a closed strings

in the bulk.
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2.1 Single-string density of states

The open strings in the (p, q) sector have NN momenta, DD windings, and oscillators

in all transverse directions. Notice that they do not have momentum or winding

quantum numbers in the ND or DN directions. As a result, the thermodynamic

quantities of the (p, q) system are independent of the ND, DN moduli RND, RDN .

Using T-duality, we assume that all radii are larger or equal than the T-selfdual

radius: RNN , RND, RDN , RDD ≥ 1 in string units.2 In fact, when the radii are of
stringy size, the NN or DD character is not sharply defined, but then we shall see

that thermodynamics depends only on ν as a dimensional parameter, which is T-

duality invariant.

The single-string energy is given by

ε2 = (~p )2 + (Oscσ − aσ) . (2.4)

The constant aσ is the normal ordering intercept with the spin structure σ: a = 1

for bosonic strings, aNS = 1/2 for Neveu-Schwarz spin structure and aR = 0 for the

Ramond sector, in the case of superstrings. Open strings on D-branes have aR = 0

and aNS = (ν − 4)/8. Here ~p is the momentum in the spatial NN directions plus the
contributions from the open-string windings in the DD directions,

(~p )2 =
∑
i∈NN

n2i
R2i
+
∑
i∈DD

l2iR
2
i , (2.5)

where Ri are the torus radii. The oscillator part Oscσ receives integer contributions

from world-sheet bosons in NN or DD directions, but half-integer contributions from

the bosons in ND and DN directions. World-sheet fermions contribute according to

the spin structure (which is correlated with the bosonic modding, i.e. fermions have

the same modding as bosons in the R sector, and opposite in the NS sector).

The number of states with a particular value of the oscillator level, Osc = n, is

obtained from

d(n) =
1

2πi

∮
dq

qn+1
f(q) , (2.6)

with the function

f(q) = Trosc q
Osc (2.7)

denoting the oscillator trace generating function. In a manifestly supersymmet-

ric treatment, such as the Green-Schwarz formalism, the modding of fermionic and

bosonic oscillators must be the same: integer in NN+DD directions and half-integer

in ND+DN directions. Thus, we get a factor of

∞∏
m=0

(
1 + qm

1− qm
)

(2.8)

2We shall use throughout the paper string units with Regge slope parameter α′ = 1, which has
the property that the T-selfdual radius is Rself−dual = 1.
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for each of the 8− ν transverse NN+DD directions, and a factor of
∞∏
m=0

(
1 + qm+

1
2

1− qm+ 12

)
(2.9)

for each of the ν directions with ND or DN boundary conditions. In addition, we

have the degeneracy from fermionic zero modes, which can be determined from the

size of the corresponding massless multiplets. It is given by Cν = 2
4−ν/2, i.e. a ten-

dimensional vector multiplet (C0 = 16) for ν = 0, a half-hypermultiplet (C4 = 4) for

ν = 4, and a single state for ν = 8. These degeneracies may be affected by ‘flavour’

factors, such as a factor of N2 for N parallel D-branes in ν = 0, a factor of 2 for

both orientations (i.e. (p, q) and (q, p) strings) in ν 6= 0 sectors, or factors of 1/2 due
to orientifold projections.

Putting all factors together, and using Jacobi’s and Dedekind’s functions, we

find, for each single orientation and flavour sector:

f(q) =

(
θ2(q)

η(q)3

)4− ν
2
(
θ3(q)

θ4(q)

) ν
2

. (2.10)

A crucial property of (2.10) is that the contribution from ND and DN directions

has no modular anomaly under modular transformations, consistent with the absence

of zero modes in those directions.

Using the modular properties of f(q) the integrand of (2.6) can be approximated

for q → 1 [29]. If we define q = 1− ξ then

f(q)

qn+1
∼
(
ξ

2π

)4−ν/2
exp

(
2π2

ξ
+ (n+ 1)ξ

)
. (2.11)

There is a saddle point at ξ0 =
√
2π/
√
n+ 1. Upon expanding about this and

doing the Gaussian integral which results, one finds that the following level-density,

a generalization of results in [5, 6, 8],

d(n, ni, li) ∼ n(ν−11)/4 eβc
√
n , (2.12)

where βc = 2
√
2π. The level density tells us the number of oscillator modes in a given

momentum and winding sector. The single-string density of states is then obtained

by summing over all zero-mode quantum numbers, with the constraint of eq. (2.4)

ω(ε)dε ∼
∑
li,ni

ε(ν−9)/2eβc
√
n(ε) dε , (2.13)

with the function n(ε) defined by (2.4) upon setting Osc = n(ε). Note that, since

all dimensions are taken to be compact, there are no integrations over continuous
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momenta and no volume factors.3 These are recovered once we let the dimensions

become large and perform a large-ε expansion of n(ε);

√
n(ε) = ε−

∑
i∈NN

n2i
2 εR2i

−
∑
i∈DD

l2iR
2
i

2 ε
+ · · · (2.14)

The summations over ni and li can be approximated by Gaussian integrals when

each successive term in eq. (2.14) is small and the summations are nearly continuous,

which requires

R2NN � 1/ε
R2DD � ε . (2.15)

The first condition is always satisfied (by assumption, since we have T-dualized the

small directions and since ε � 1 for the asymptotic approximation (2.13) to be

accurate at all). The second condition gives a threshold energy, above which the

string is energetic enough to wind around Dirichlet directions which we shall define

(for later convenience) as,

ε0 =
2R2DD
βc
. (2.16)

When ε � ε0 the Dirichlet directions can only contribute when li is zero. The

single-string density of states in the limits of high and low energy is

ω(ε)dε =

{
βc VNN (βc ε)

−dDD/2 eβc ε dε ε� ε0
f βc e

βc ε dε ε� ε0.
(2.17)

where VNN is the directions, and where we have defined the ratio of volumes as

f =
VNN

VDD
. (2.18)

Note that the density of states changes as we go through the energy threshold and

strings are able to wind in the Dirichlet direction. The exponent in eq. (2.17) counts

the number of DD directions in which strings are not able to wind and hence it can be

generalized to the case where the Dirichlet directions have varying sizes; one instead

finds a series of thresholds and an ω(ε) which interpolates between the two extremes

in eq. (2.17). To accomodate this possibility, we define an effective dimension for

open strings do(ε) which is the number of DD dimensions around which the strings

cannot wind (i.e. which do not obey eq. (2.15)),

0 ≤ do ≤ dDD . (2.19)

3Our separation of quantum numbers between oscillators and momentum/winding is natural

in the context of backgrounds with a clear geometric interpretation, such as tori or other sigma-

models. However, it is not strictly necessary, and similar results can be obtained for more general

CFT’s.
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We define the volume of these dimensions to be Vo and then have

ω(ε) = βc f Vo
eβcε

(βc ε)γo+1
, (2.20)

where the critical exponent γo is given by

γo =
do

2
− 1 . (2.21)

We can, at this point, also define an effective number of large space-time dimensions

which is a function of ε,

Do(ε) = dNN + do(ε) ≤ 10− ν. (2.22)

Notice that, in this definition, we have excluded possible ‘large’ ND+DN directions,

as they play no role in opening thresholds.

Examples. For what is normally meant by a Dp-brane (i.e. a (p+ 1)-dimensional

world-volume with 9−p non-compact Dirichlet directions and p spatial non-compact
Neumann directions), we would recover dNN = p + 1 and always have ε < ε0 = ∞,
and hence

ω(ε) dε = βc VNN (βc ε)
−(10−dNN )/2 eβc ε dε = βc Vp (βc ε)(p−9)/2 eβc εdε , (2.23)

in accord with ref. [19]. However eq. (2.20) carries useful additional information about

what happens to the density of states as dimensions expand or contract. In particular

we see a kind of behaviour that is familiar from closed-string thermodynamics. When

a Dirichlet direction becomes sufficiently small or strings become sufficiently energetic

(given by eq. (2.15)), open strings are able to wind around it. This is reflected in

the density of states by that dimension becoming ‘compact’; when all the Dirichlet

directions are compact, and ε� ε0 we instead find

ω(ε) dε = βc
Vp

VD−p−1
eβc ε dε . (2.24)

Open strings in Type-I theories propagate through the whole Neumann volume,

and hence the calculation is the same as for open strings on the (dNN − 1)-brane in
Type-II theory; if the space is non-compact we would again take ε � ε0 in which
case we recover the non-compact result of ref. [12] when γo = (Do−dNN )/2−1 = −1.
However when any of the dimensions are compact, there is an energy dependence

in the density of states in this case as well. In particular, we could consider the

case where there are 3+1 directions which are much larger than the string scale, c

compactified directions of order the string scale and 6 − c compactified directions
which are much smaller than the string scale. (After a duality transformation these

become 6−c Dirichlet directions much larger than the string scale with heavy winding
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modes.) In this case the density of states depends on how many of the compact

dimensions the strings are able to probe. That is, when the internal energy is very

large the open strings are able to propagate throughout the whole space and we have

γo + 1 = 0. However, when ε � ε0 we instead have γo + 1 = dDD/2 = 3 − c/2
(since in the T-dualized theory the very small Neumann directions have become

Dirichlet directions with winding modes which are too heavy to excite). For cases

of phenomenological interest there may be varying radii and hence a complicated

energy dependence in γo.

Free energy. The canonical free energy F = −1/β logZ is now given by the
Laplace transform of ω(ε). The different energy thresholds in (2.17) translate into

analogous thresholds in temperature, since 〈ε〉 ∼ (β−βc)−1, we can regard Vo as the
volume of the DD directions satisfying

1� β − βc
βc

� 1

R2DD
.

In this region, we have the approximate behaviour

logZ ∼
∫
dε ω(ε) e−βε

= f Vo

(
β − βc
βc

) do
2
−1
. (2.25)

Notice that, as soon as we assume compact dimensions, we require additional infor-

mation about the system as a whole (i.e. its total energy) in order to calculate the

free energy. When all dimensions are assumed to be non-compact from the outset

this problem of course never arises since it would require an infinite amount of energy

for a string to wind so that the above is always valid. However, the thermodynamic

limit means taking an infinite volume and filling it with a finite energy density. Con-

sequently, in a compact space of any size, there can in principle be enough energy

available for strings to wind.

2.2 Euclidean approach

This question of the effect of compact dimensions on the thermodynamic limit (which

was just stated in rather simple minded terms) is of central importance and was

addressed for closed strings in ref. [8]. It will require a proper understanding of

the microcanonical ensemble which will be the main goal of the next section. As

a first step, let us recalculate the density of states using the method of refs. [15,

17, 19] in which the free energy is determined by compactifying in an imaginary

time direction with periodicity β. The particular benefit of this method is that it

identifies the leading and subleading contributions to the free energy as singularities
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of the partition function in the complex β plane, as a result of ‘massless’ closed-

string exchange between the branes. Our main task therefore is to find the structure

of these singularities.

In the (p, q) sector the free energy is a sum of terms for different spin structures

{σ}, each one of the form

logZ(p,q,σ) =
1

2

∫
dt

t
Tropen O(σ)GSO e−t∆open , (2.26)

where OGSO is (a piece of) the GSO projector, i.e. ±1 or ±(−1)F depending on the
particular spin structure. The open-string world-sheet hamiltonian is

∆open = 4π
2n2σ/β

2 +

(
~n

RNN

)2
+ (~l RDD)

2 + (Osc− a)σ , (2.27)

with nσ an integer or half-integer depending on the bosonic or fermionic statistics of

the space-time states being traced over. For notational simplicity, we are assuming

here equal radii within each NN or DD class of directions. The generalization to

arbitrary radii is straightforward.

Upon Poisson resummation in nσ, ~n and ~l we find

logZ(p,q,σ) ∼ β · f ·
∫
dt

t
t−(dNN+dDD)/2 TroscO(σ)GSO e−t(Osc−a)σ ×

×
∑
n,~n,~l

(−1)nFσ e− 2π
2

t
∆
(0)
closed , (2.28)

where n is now an integer and F is the space-time fermion number. The zero-mode

action now reads

2 ∆
(0)
closed = (~nRNN )

2 +

(
~l

RDD

)2
+
n2β2

4π2
. (2.29)

This notation suggests that the appropriate modular transformation to the closed-

string channel is given by the change of variables t = 2π2/s, which acts on the theta

functions from the oscillator traces in the following universal form:

Tropen oscO(σ)GSO e−t(Osc−a)σ ∼ s−4+ν/2 〈Dposc|O(σ)GSO e−s(OscL+OscR−aL−aR)σ |Dqosc〉 .
(2.30)

The power of s−4+ν/2 in this formula comes from the modular transformation of eight-
dimensional transverse oscillator traces as in (2.10). The closed strings propagating

between D-brane boundary states (as given for example in [30]) do not have windings

and momenta at the same time in any direction, so that we can assume trivial level

matching for all spin structures when evaluating eq. (2.30):

(Osc− a)L = (Osc− a)R . (2.31)
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Now, putting everything together, one obtains an expression with the form of a

closed-string propagator:

logZ ∼ +f
∫
ds
∑
λ

gλ e
−sλ , (2.32)

where the quantities

2 λ =
n2β2

4π2
+

(
~l

RDD

)2
+ (~n RNN)

2 + 4 (Osc− a) (2.33)

are those eigenvalues of the full closed-string kernel, ∆closed, with non-vanishing over-

lap with both D-brane states:

〈λ|Dp,Dq〉 6= 0 (2.34)

and gλ denotes the multiplicity of a given eigenvalue. The spectrum is discrete at

finite volume, which justifies writing the free energy as a discrete sum.

This result admits some simple generalizations. In the presence of orientifold

planes, analogous considerations hold, replacing the D-brane boundary states by ori-

entifold boundary states |Op〉, and introducing the orientation projection in the open-
string sector. The result is an expression of the same general form as eq. (2.32), with

a different modding of quantum numbers in the closed-string sector (see ref. [17]).

For example, a crosscap restricts the winding numbers to be even.

One can also generalize the previous formulas to the case where various D-branes

and orientifold planes have some transverse separation LDD. This simply introduces

a stretching energy for the open strings of the form LDD/2π, which translates into

a new term in the closed-string channel expression eq. (2.32), an insertion of e−L
2/2s

in the proper-time integral.

Critical behaviour. Formula (2.32) is ideally suited for estimating the critical

behaviour of the free energy. At finite volume, singularities appear only when some

eigenvalue vanishes as a function of the temperature, which in turn can be extracted

from the behaviour of the integral (2.32) for large proper times s → ∞. A natural
ultraviolet cut-off for the s-integral corresponds to s ∼ 1 in string units, leading to
a representation in terms of an incomplete Gamma function

logZ ∼ f
∑
λ

gλ λ
−1 Γ [1 ; λ] , (2.35)

with the simple scaling

logZ ∼ f
∑
λ

gλ

λ
e−λ ≈ f

∑
λ<O(1)

gλ

λ
. (2.36)

Notice that the cut-off in the Schwinger parameter at s ∼ 1 effectively restricts the
eigenvalue sum to |λ| < O(1) in string units.
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From eq. (2.33), we find that λ is an increasing function of β2. In all cases of

interest, the NS-NS scalar with thermal winding number n = ±1 [20, 21, 7] survives
the GSO projection, and therefore has a tadpole on the D-brane state:

〈Dp|n = ±〉 6= 0 , (2.37)

with degeneracy g = 2. In this sector, there is a negative Casimir energy (from aNS =

1/2) and the thermal scalar becomes massless at the leading (lowest temperature)

zero of the eigenvalues λ(n = ±1). The origin of the thermal scalar in the closed-
string sector is responsible for the universality of this singularity:

β2c = 8π
2 , (2.38)

the standard Hagedorn temperature of Type-II strings. The most important sub-

leading terms correspond to a family of nearby singularities for RDD � 1 given by

β2c (l) = β
2
c

(
1− l2

2R2DD

)
. (2.39)

The multiplicity for large l is given by4

gl ' 2Vol(SdDD−1) ldDD−1 . (2.40)

Notice that the large world-volume of the D-brane, RNN � 1, does not introduce
any new singularities at ‘low’ temperatures.

If a given eigenvalue vanishes at β = βα,

λcritical = 2n
2

(
βα
βc

)2 (
β − βα
βα

)
+O (β − βα)2 , (2.41)

the free energy in the vicinity of βα has a leading singular piece (from the analytic

structure of the incomplete Gamma function)

logZsing,α ∼ f
(
β − βα
βα

)−1
. (2.42)

The Taylor expansion of the regular part around β = βα is of some interest for the

calculations in the next section. It can be parametrized in the form

logZreg,α ∼ aα VNN − ρα VNN(β − βα) +O
(
VNN (β − βα)2

)
, (2.43)

where aα and ρα respectively have dimensions of number and energy density on the

world-volume of the intersection. It is convenient to extract a power of VNN when

studying large world-volumes, so that aα, ρα = O(1) in string units. In particular,
4Notice that the multiplicity of any critical eigenvalue is even because λ ∝ β2n2 and n = 0 states

do not produce critical behaviour.
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this is also true when the transverse volume is also large in string units VDD �
1, since both aα and ρα get most of their contribution from the sum over non-

critical eigenvalues in eqs. (2.35) and (2.36). The eigenvalues (2.33) are densely

distributed with spacing ∆λ ∼ 1/R2DD, and the sum over non-critical eigenvalues
is itself of O(VDD). Furthermore, although aα and ρα can be complex in general,
explicit inspection of eqs. (2.35) and (2.36) shows that the critical density at the

leading Hagedorn singularity βα = βc is real and positive ρc > 0 in the same limit,

as well as the critical entropy density ac > 0 (one uses the fact that all λ 6= λ0 are
positive at βc, and that the function

λ−1 Γ [1 ; λ]

is positive and monotonically decreasing for λ > 0).

It is worth emphasizing, since this will be crucial later on, that all the quanti-

ties which govern the physics are defined on the world-volume of the intersection.

Thus, for an isolated brane, Hagedorn behaviour (long string dominance for example)

‘switches on’ when critical densities are reached on the brane.

If the transverse space in DD directions is non-compact the singularity structure

displayed in eq. (2.42) changes. The singularities (2.42) coalesce with the Hage-

dorn singularity, changing the analytic properties of the free energy. Going back to

eq. (2.32) and converting the sum over ~l into a continuous integral, we obtain the

result of eq. (2.25) with do = dDD,

logZsing ∼ Γ(1− dDD/2)
(
β − βc
βc

)−1+dDD/2
, (2.44)

with a logarithmic correction if dDD is an even integer. This is in accord with our

previous estimate from ω(ε) with ε � ε0. In particular, for ν = 0, we recover the
result of ref. [19]; γ = (7− p)/2.
These results contain all the required information to pass to the microcanonical

ensemble, including the dependence on energy thresholds. For example in a compact

space simply leave the free energy as a sum;

logZ ≈ f β2c
∑

l<O(RDD)
cl

gl
β2 − βc(l)2 . (2.45)

The analytic structure is characterized by a set of isolated singularities at β = βl.

It can be verified that upon taking the inverse Laplace transform of eq. (2.45)

one recovers the full single-string density of states, ω(ε), of eq. (2.54). The relevant

contour in β may be deformed to give a sum over poles, so that ω(ε) may be written

ω(ε) = βc e
βc εf

∑
l

gl e
−l2ε/ε0 . (2.46)
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Only the first term contributes when ε � ε0. When ε � ε0 we can instead

approximate the sum over l by an integral which gives a factor (ε/ε0)
−dDD/2 =

VDD(βcε)
−dDD/2 as required. At intermediate energies we recover the full energy-

dependent effective dimensions of eq. (2.20).

2.3 Random walks

In this subsection we rederive the previous results on the single-string density of

states from the heuristic random walk picture of a highly excited string (see for

example [31]). In addition to providing a nice physical interpretation and checks

of the calculations, this point of view leads to some possible generalizations beyond

toroidal backgrounds.

As a warm-up, we derive the distribution function ω(ε) for closed strings in

D large space-time dimensions. The energy ε of the string is proportional to the

length of the random walk. The number of walks with a fixed starting point and

a given length ε grows exponentialy as exp (βc ε).
5 Since the walk must be closed,

this overcounts by a factor of the volume of the walk, which we shall denote by

V (walk) = W . Finally, there is a factor of VD−1 from the translational zero mode,
and a factor of 1/ε because any point in the closed string can be a starting point.

The final result is

ω(ε)closed ∼ VD−1 · 1
ε
· e
βc ε

W
. (2.47)

Now, the volume of the walk is proportional to ε(D−1)/2 if it is well-contained in the
volume (R� √ε), or roughly VD−1 if it is space-filling (R� √ε). From here we get
the standard result [5, 6, 7, 8]. We have

ω(ε)closed ∼ VD−1 eβc ε

ε(D+1)/2
(2.48)

in D effectively non-compact space-time dimensions, and

ω(ε)closed ∼ e
βc ε

ε
(2.49)

in an effectively compact space.

We can generalize this analysis to open strings in a general (p, q) sector by a

slight modification of the combinatorics. The leading exponential degeneracy of a

random walk of length ε with a fixed starting point in say the Dp-brane is the same

as for closed strings: exp(βc ε). Fixing also the end-point at a particular point of the

Dq-brane requires the factor 1/W to cancel the overcounting, just as in the closed

string case. Now, both end-points move freely in the part of each brane occupied by

the walk. This gives a further degeneracy factor

(WNN WND) · (WNN WDN ) , (2.50)
5The proportionality constant βc depends on the bulk details of the string, such as the presence

of fermions on the world-sheet, but it is independent of boundary effects (i.e. open or closed strings).
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from the positions of the end-points. Finally, the overall translation of the walk in

the excluded NN volume gives a factor VNN/WNN . The final result is:

ω(ε)open ∼ VNN
WNN

·WNN+ND ·WNN+DN · 1
W
· exp (βc ε) ∼ VNN

WDD
exp (βc ε) . (2.51)

Thus, we find that the density of states is only sensitive to the effective volume of

the random walk in DD directions. If the walk is well-contained in DD directions

(RDD � √ε), we find WDD ∼ εdDD/2 and

ω(ε)open ∼ VNN
εdDD/2

exp (βc ε). (2.52)

On the other hand, if it is space-filling in DD directions (RDD � √ε), the DD-volume
of the walk is just WDD ∼ VDD and we find

ω(ε)open ∼ VNN
VDD

exp (βc ε) , (2.53)

in agreement with (2.17) and (2.20).

The random walk picture gives a geometric rationale for the similarity between

non-compact closed-string and open-string densities of states. It is related to the

fact that the random walk must ‘close on itself’ in some effective co-dimension (the

full space for closed strings and the DD space for open strings).

A further interesting aspect of the random walk derivation is that it naively gen-

eralizes to arbitrary backgrounds. In principle, one could take for example a group

manifold without non-contractible cycles, showing that it is ‘available volume’, rather

than ‘winding modes’ that really determines the physics of the Hagedorn ensembles.

For toroidal backgrounds these two features cannot be disentangled, and the Poisson

resummation performed in the previous section leads to a nice interpretation of the

relevant singularities as associated to winding modes in the open-string sector. Since

we lack exact results in other backgrounds, we shall continue working with the lan-

guage appropriate for toroidal backgrounds, refering to the opening of the winding

thresholds as synonymous with the general ‘volume saturation’ property described

in this section.

2.4 Summary

We complete this section by collecting the expressions for the densities of states of

single strings. For the open strings we found

ω(ε) = βc f Vo
eβc ε

(βc ε)γo+1
, (2.54)

where

γo =
do
2
− 1 = Do − dNN

2
− 1 , (2.55)
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and Do is the effective number of large dimensions we defined above (i.e. the total

number of NN+DD dimensions minus the dimensions in which open strings have

sufficient energy to wind).

The analytic structure of the free energy at the Hagedorn singularity is given by

logZsing ∼


Γ(−γ) f (β − βc)γ , γ /∈ Z+ ∪ {0}
(−1)γ+1
Γ(γ + 1)

f (β − βc)γ log(β − βc) , γ ∈ Z+ ∪ {0} (2.56)

with the critical exponent γ = −1 for compact DD directions. If a number d∞
of DD dimensions are strictly non-compact, the form (2.56) is still valid with the

replacements γ → γ + d∞/2 and f → f · V∞.
The density of states in the closed-string sector has already been calculated in

the context of weakly-coupled strings [5, 6, 7, 8]. For this we need to define another

energy-dependent effective space-time dimension, Dc, which is the total number of

dimensions minus the number of dimensions around which closed strings can wind

(given by the equivalent of eq. (2.15)). If we also define the volume of this dimension,

Vc, we then have

ω(ε) = βc Vc
eβc ε

(βc ε)γc+1
, (2.57)

where

γc =
Dc − 1
2

(2.58)

is the ε-dependent critical exponent for the closed strings.

According to [8], the analytic structure of the partition function at finite volume

is given by a set of poles of even multiplicity gα = 2kα:

Zsing,cl ∼
∏
α

(
βα
β − βα

)kα
, (2.59)

with kα = kc = 1 for the leading Hagedorn singularity βα = βc. If D∞ space-
time dimensions are non-compact, one obtains the same expression as in (2.56) with

γ → (D∞ − 1)/2 and f → V∞.

3. Thermodynamic properties from the microcanonical en-

semble

We now progress to a discussion of the thermodynamic properties of isolated and

coupled systems in the Hagedorn regime. The first part of this section will be mostly

taxonomy; we shall categorize the systems according to the classical (non-stringy)

analysis of Carlitz [2] into those for which the Hagedorn temperature is a limiting

temperature in the canonical (Gibbs) approach, and those for which the temperature

is non-limiting. The non-limiting systems should be further analyzed since it is
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γ open closed P ∼ (β − βc)X Ec Emc

γ < 0 dNN > Do − 2 Dc < 1 γ γ − 1 ←
γ = 0 dNN = Do − 2 Dc = 1 log γ − 1 ←
0 < γ < 1 Do − 2 > dNN > Do − 4 1 < Dc < 3 constant γ − 1 ←
γ = 1 dNN = Do − 4 Dc = 3 constant log ←
γ > 1 dNN < Do − 4 Dc > 3 constant constant −1

Table 1: Thermodynamic regimes for open and closed strings withDo andDc non-compact

space-time dimensions. The remaining dimensions are string scale.

these systems for which the canonical and microcanonical ensembles are found to

be inequivalent. Indeed in general (although not, as it turns out, for most of the

cases we shall be examining here) the microcanonical ensemble can have regions of

negative specific heat, indicating the possible onset of some phase transition.

Clearly then, in order to discuss the thermodynamic behaviour of string gases,

we ought to work in the microcanonical ensemble and this is the subject of the second

part of this section. For this we shall have to tackle some additional, purely stringy

aspects of the thermodynamics. The most important question, as we have already

mentioned, is how to take the thermodynamic limit when the space has compact

but large dimensions [8]. The thermodynamic limit involves letting the volume go to

infinity whilst keeping the energy density finite. The analysis of ref. [8] shows that

for closed strings there is a rather peculiar dependence on dimension; when there

are more than two space dimensions which are just large rather than non-compact,

taking the thermodynamic limit always results in winding modes. Consequently the

thermodynamic properties depend on whether one assumes space to be compact and

supporting winding modes, or assumes space to be non-compact from the outset (see

however [32]). For open strings attached to D-branes we shall see that the issue is

further complicated by the fact that the strings can only wind in the subspace with

DD boundary conditions. We shall find an additional parameter, the ratio of NN to

DD volumes, which plays a central role, determining the effects of winding modes.

Various results for the different brane backgrounds obtained in both the canonical

and microcanonical ensembles are tabulated. Table 1 shows the dependence on (β−
βc) of the internal energy, E, and the pressure, P , for both cases, where γ stands for

γo and γc (the entries are the values of X in (β−βc)X whenever the thermodynamic
function diverges as a power, and denote the value of the function itself otherwise,

i.e. logarithmic for X = 0 and constant for X > 0). Thus, for example, the pressure

for open strings scales with temperature at a fixed volume in the same way as the

free energy;

P ∼
(
β − βc
βc

)γo
=

(
β − βc
βc

)(Do−2−dNN )/2
. (3.1)
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We stress that the table is written for the thermodynamic limit where Do and Dc
dimensions are non-compact with the rest of the dimensions being string scale. Thus,

no effects of winding modes are reflected in the table. The leftarrows in the table

indicate that the non-stringy microcanonical ensemble has the same internal energy

as the canonical. In addition the microcanonical ensemble expression for γ > 1 is

valid at high internal energies [2]; approximately

βcE � 1 . (3.2)

At lower energies the microcanonical and canonical ensembles coincide. Note that

parameter a appearing in eq. (1.1) is given by

a = −γo,c − Do,c + 1
2

. (3.3)

The difference between open and closed strings can be understood as being due to

integrating ρ(m) only over dimensions in which the centre of mass of the strings can

propagate [19]. This dimension can be different for open and closed strings as we

saw in the preceding section.

According to the table, all systems which have γ ≤ 1 are unable to reach the
Hagedorn temperature since they require an infinite amount of energy to do so. In

these cases the Hagedorn temperature is limiting, and this is true for all open strings

with dNN ≥ Do − 4. In addition, from this table, one might conclude that the
Hagedorn temperature is non-limiting for the closed strings in any realistic model

(i.e. one which has Dc ≥ 4). When we place a system with γ ≤ 1 in a heat bath, it
will however behave as a normal gas in the sense that it is able to come to equilibrium

with it.

On the other hand, when γ > 1, the canonical and microcanonical expressions

disagree at high internal energies. This is an indication that there are large fluctua-

tions in the microcanonical system. For these systems, Carlitz estimates

E ≈ γ + 1

(βc − β) , (3.4)

and so we see that the specific heat is negative. In addition the energy itself is

negative below Tc. Thus in these cases it is difficult to ascertain what is going on as

we approach the Hagedorn temperature from below, and this is where stringy effects

become important.

In the original Carlitz analysis, it was suggested that the temperature rises

above the Hagedorn temperature at some intermediate energy and approaches it

from above. However, for stringy systems at least, the picture must be very different

since the string ensemble in contact with a heat bath above Tc is not well-defined [6].

Systems which are non-limiting can be taken up to Tc by a heat bath but, in the case

of an ensemble of strings in a non-compact space, additional energy simply goes into
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one very long string. In either picture of course the broad conclusion is the same

— the non-limiting string ensembles cannot come into equilibrium, and conventional

thermodynamics breaks down near Tc. However when, as here, we wish to consider

two or more such systems in thermal contact, a detailed understanding is required.

The problems in defining a reasonable thermodynamics of non-limiting systems

can be bypassed by working in finite volume. In fact, string interactions contain

gravity, which necessarily ruins any thermodynamic limit due to the Jeans instability.

Thus, consistency also demands that we work in a sufficiently small volume, which

still could be large enough to admit an approximate thermodynamic description. We

shall address the question of string interactions and their effects on the spectrum of

the theory in the last section of the paper. For the time being, we shall work in finite

volume and investigate to what extent purely perturbative stringy effects affect the

definition of the thermodynamic limit.

For weakly-coupled closed-string theories, a more complete physical picture in

this vein was provided by Deo et al. [8] who pointed out the pitfalls in taking the

thermodynamic limit. The main argument of ref. [8] can be understood as follows.

Consider attempting to recover table (1) by letting D space-time dimensions become

much larger than the string scale. (We stress that D is not to be confused with

Do or Dc; it is not a function of string energy ε.) By giving the large dimensions

a common radius R � 1 whilst keeping the density ρ constant, we might expect
to obtain behaviour consistent with Dc = D in the table. However, on letting the

radius become large, the energy scales as RD−1, whereas the (sufficient) condition
that there should be no windings in the D − 1 large dimensions is that the total
energy obeys E � ε0 = 2R2/βc. Clearly this condition is always violated when
D > 3 in the infinite volume limit, and it seems that the larger the radius becomes

the more energy there is to excite winding modes. This argument indicates that we

should instead find behaviour consistent with Dc = 1 in a large but compact space

with D > 3 space-time dimensions. (This is why we stressed that the table is only

correct for Do and Dc non-compact effective dimensions.)

What goes wrong with the naive expectation for the above example of closed

strings, is that it gives the wrong value of γ, which depends on the macroscopic

properties of the system such as windings. These heuristic arguments can only be

confirmed by looking at the multiple string density of states where, for example, we

can find the energy distribution and count the number of winding modes.

So, it is clear that there are two important issues that we should now address.

The first, which we tackle in the following subsection, is how to calculate the density

of states for a given value of γ. A method based on analytic continuation to com-

plex temperatures was developed in ref. [8] in order to find the density of states of

closed strings. We shall extend this method to include D-branes by introducing two

approximations (the saddle point and the branch-cut approximations) which can be

used in different volume and energy limits.

20



J
H
E
P
0
4
(
1
9
9
9
)
0
1
5

The second issue, which is more subtle, is of course the correct value of γ for

particular physical systems in particular limits. This is discussed in subsections 3.2

and 3.3 where we consider examples of various different closed- and open-string

systems In particular in section 3.3 we study open strings in a finite box (equivalent

to γ = −1) where we can also find a more complete expression for the density of
states (i.e. one which is valid for any choice of volumes and energies).

3.1 Complex temperature formalism

In order to have a well-defined system, we consider a finite-volume nine-torus with

D − 1 large space dimensions of radius Rlarge � 1, and 10 − D remaining spatial
dimensions of string-scale size Rsmall ∼ O(1). The total volume is then

VD−1 ∼
∏
large

Rlarge . (3.5)

In the presence of intersecting D-brane configurations, the string Hilbert space splits

into different sectors: closed strings propagating in the full torus of volume VD−1, and
open-string sectors characterized by the number of ND+DN directions, the T-duality

invariant index ν, in addition to the world-volume dimensionality dNN , and the

remaining dDD DD directions. For each open-string sector, we denote by d‖ ≤ dNN−1
the number of spatial NN directions, of size R‖, which are also large, and likewise
d⊥ ≤ dDD the number of large DD directions of size R⊥. One always has 0

d‖ + d⊥ = D − 1− ν . (3.6)

It is important to keep in mind that each open-string sector has a particular factor-

ization of the total volume in NN and DD components.

On general grounds, the microcanonical density of states of a gas of strings with

total energy E can be obtained as an inverse Laplace transform of Z(β) (see ref. [6]

for a review);

Ω(E) =

∫
C∞

dβ

2πi
eβE Z(β) , (3.7)

with the contour C∞ encircling β = ∞ clockwise. Given the analytic structure of
the canonical partition function as explained in the previous section, we can estimate

Ω(E) in a high-energy expansion by contour deformation through the singularities

of Z(β). The original contour C∞ can be split into pieces running close to the
singularities (encircling counter-clockwise the singularities if they are isolated, as in

figure 1, or the cuts if they are branch-points), C∞ = ∪αC(βα).
In the ideal-gas or one-loop approximation the total density of states factorizes

in sectors:

Ω = Ωclosed ·
∏
(p,q)

ΩDp−Dq + 2 loop . (3.8)
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Figure 1: Contour deformation for isolated singularities.

In a given sector, the density of states is then written as a sum Ω =
∑
αΩα, each

term being dominated by the behaviour of Z(β) near the singularity βα

Ωα ≈ eβα E+aα V‖
∫
Cα

dβ

2πi
e(β−βα)(E−ρα V‖) Zsing,α , (3.9)

where we have used the Taylor expansion (2.43) of the regular part of the free energy

logZreg,α to leading order
6

logZreg,α ∼ aα V‖ − ρα V‖ (β − βα) +O
(
V‖ (β − βα)2

)
. (3.10)

The quantity ρα ∼ O(1) in string units, is a critical Hagedorn density on the relevant
volume for each sector. The smallness of the neglected higher order terms in (3.10)

must be checked in each situation.

The singular part for open-string systems takes the form

logZsing,α ∼ 1
2
Cγ gα f (β − βα)γ [log (β − βα)]δ , (3.11)

with gα is the degeneracy of the critical eigenvalue λα, δ = 1 if γ is a positive (or

zero) integer, and δ = 0 otherwise. The constant

Cγ ∝


Γ(−γ) , γ /∈ Z+ ∪ {0}
(−1)γ+1
Γ(γ + 1)

, γ ∈ Z+ ∪ {0} . (3.12)

The volume factor

f =
V‖
V⊥
, (3.13)

and the critical exponent γ = −1 + ν/2. Formula (3.11) may also be used for closed
strings, where γ = 0, δ = 1, and the absolute normalization is obtained setting f = 1.
6When considering the closed-string sector, all volume factors in the formulas apply with the

replacements V‖ → VD−1 and V⊥ → 1.
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The dominance rule of the Hagedorn singularity. The condition that the

full density of states is dominated by the contribution from the Hagedorn singularity

β0 = βc = 2π
√
2 is

log

(
Ωc
Ω1

)
� 1 , (3.14)

with Ω1 the contribution to the density of states from the closest singularity to βc,

which we shall denote β1. In all the situations considered in the present work, β1
is real and β1 < βc. A necessary condition is obtained from the leading exponential

behaviour of (3.9)

βcE + ac V‖ � β1E +Re(a1)V‖ (3.15)

or, estimating the coefficient Re(a1) ≈ a0+ρ′c (βc−β1) in a Taylor expansion around
βc, with ρ

′
c = O(1) in string units,

(βc − β1)(E − ρ′c V‖)� 1 . (3.16)

This is a necessary condition, albeit not sufficient, as we will learn later on in this

section. Again note that this is a condition involving the energy density on the brane

(or intersection).

If the next-to-leading singularity β1 is independent of the T-moduli, then βc −
β1 ∼ O(1) and condition (3.16) reduces to the requirement of large energy densities
in the relevant world-volume (VD−1 for closed strings or V‖ for open strings):

ρ ≡ E
V‖
� O(1) (3.17)

in string units. We shall always work in this regime.

However, in many cases β1 depends on the T-moduli. For example, if some

R⊥ � 1 in open-string systems, we have βc − β1 ∼ 1/R2⊥ as in (2.39), and (3.16)
depends non-trivially on the DD moduli. If R⊥ is sufficiently large for a given total
energy, the condition (3.16) is violated. In this case, it is a better approximation to

evaluate the density of states in the non-compact limit R⊥ ∼ ∞, which corresponds to
the radius-dependent singularities coalescing with the Hagedorn singularity, changing

the critical exponent according to

γ → γ∞ = γ + d∞
2
, (3.18)

with d∞ the number of such ‘non-compact’ dimensions. The volume factor in (3.11)
also changes by removing from V⊥ the volume of the ‘non-compact’ dimensions. For
example, if all d⊥ large DD directions are to be approximated as non-compact, we
have

f → f∞ ∼ V‖ . (3.19)
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Thus, we handle the violation of (3.16) by a change in the critical exponent γ.

After this, the remaining closest singularity is independent of the DD radius and is

separated a distance of O(1) in string units.
In the context of these approximation techniques, we shall discuss the evaluation

of the basic integral (3.9) for a general value of the critical exponent γ. A change of

variables gives the following expression for the Hagedorn singularity contribution:

Ωc ≈ eβcE+ac V‖ · ωγ ·
∫
C(βc)

dz

2πi
exp

{
xγ (z + Cγ z

γ [log(z ωγ)]
δ)
}
, (3.20)

where

ωγ ≡
(
xγ
f

)1/γ
, z =

β − βc
ωγ

(3.21)

and the parameter xγ is defined by
7

xγ ≡ f
(
E − ρc V‖
f

) γ
γ−1
= f [V⊥ (ρ− ρc)]

γ
γ−1 . (3.22)

It is important to keep in mind that, while βc is a universal constant for all open

and closed sectors, the ‘ground state degeneracy’ ac, and the critical energy density

ρc are sector-dependent, both dimensionally and numerically.

The representation (3.20) of the Hagedorn singularity contribution is well-suited

for the presentation of the two most useful approximation techniques in the evaluation

of Ω(E), which we now discuss.

Saddle point. Written in the form (3.20), we see that the saddle-point approxi-

mation is good if xγ � 1, provided the neglected terms in the Taylor expansion of
the regular free energy, of order

V‖ (β − βc)2+n ∼ V‖ · (xγ)
2+n

(E − ρc V‖)2+n z
2+n (3.23)

are small. These terms produce a negligible shift of the saddle point at z = zs ∼
O(1) if

V‖ (xγ)1+n

(E − ρc V‖)2+n ∼ V⊥ [V⊥ (ρ− ρc)]
2+n−γ
γ−1 � 1 . (3.24)

So, given that we are interested in Hagedorn densities in the world-volume ρ > ρc,

and V⊥ ≥ 1 by construction, we see that, as soon as γ > 1, (3.24) is violated at
sufficiently high order in the Taylor expansion. Thus, the saddle-point approximation

is not applicable to the full integral for γ > 1, even if xγ � 1.
7The case γ = 1 is excluded from the present discussion and will be dealt with separately below.
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On the other hand, for γ < 1 and xγ � 1, the analytic corrections are under con-
trol and the saddle-point approximation is good, leading to a Hagedorn-dominated

density of states of the form

Ω(γ < 1)saddle ≈ ωγ e
βc E+ac V‖+

γ−1
γ
zs xγ+∆s

√
xγ

[
1 +O

(
∆s
xγ

)
+O

(
1

xγ

)]
, (3.25)

for γ 6= 0. The quantity ∆s in the exponent is of order

∆s ∼ V‖ (βs − βc)2 ∼ (xγ)
2

V‖(ρ− ρc)2 ∼
V‖

[V⊥(ρ− ρc)]
2−γ
1−γ
, (3.26)

and accounts for the small shift (3.24) of the saddle-point at βs by the neglected

analytic corrections to the free energy. The first correction term in square brackets

comes from the effect of these analytic terms in the evaluation of the saddle-point

integral, while the second one is a ‘two-loop’ correction term, controlled by the small

parameter 1/xγ.

The saddle-point approximation leads to the equivalence with the canonical en-

semble, so that these results are compatible with the contents of table (1), where

γ = 1 is the maximum critical exponent admitting a canonical analysis.

By explicit inspection of the saddle-point equation, one can check that the dom-

inant saddle point (the one with largest real part) for all values of γ < 1 of the

form (3.18) has zs real and positive, so that there are large exponential contributions

to Ωc for γ < 0 in the saddle-point, xγ � 1, limit. This implies a refinement of the
condition (3.16). The contribution from the next-to-leading singularity β = β1 to the

entropy is also linear in xγ and it differs from the Hagedorn one by the replacement

xγ → (g1)1/1−γ xγ , (3.27)

with g1 the multiplicity of the singularity at β1. For the DD-moduli-dependent

singularities (2.45) we have g1 > 1 and the condition (3.16) must be refined to

(βc − β1)(E − ρ′c V‖)�
{
max (1, xγ) if γ < 0

1 if γ ≥ 0. (3.28)

We shall refer to this condition as the Hagedorn-dominance-rule (H.d.r.). Notice that

it is equivalent to the requirement that the saddle-point (canonical) temperature be

‘close’ to the Hagedorn temperature: |βc − βs| � |βc − β1|. If condition (3.28)
is violated, one has to change the critical exponent γ according to (3.18) and the

conditions for single-singularity dominance in the new regime must be considered.

If γ = 0, the ‘loop-expansion parameter’ x0 = xγ=0 = f , independent of the

energy, and we find

Ω(γ = 0)saddle ≈ e
βcE+ac V‖+f+∆s√

f

(
E − ρc V‖
f

)f−1 [
1 +O

(
∆s
x0

)
+O

(
1

x0

)]
,

(3.29)

with ∆s as in (3.26) with γ = 0.
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All the systems with γ < 1, whose behaviour is well approximated by a saddle

point, xγ � 1, show canonical thermodynamic behaviour, as in table (1). For these
systems the internal energy diverges at the Hagedorn temperature, which can be

considered as limiting. We shall denote these systems as L[γ].

No saddle point. If the conditions for the saddle-point approximation are not

satisfied, that is, we have γ > 1 or we have xγ � 1 for γ < 1, then we can try
a complementary approximation to the integral, with effective expansion parameter

(xγ)
1−γ . That is, we have an expansion which is good if xγ � 1 for γ < 1, and

xγ � 1 if γ > 1. In all cases of interest except γ = −1, the partition function has
a branch-point at the Hagedorn singularity. By evaluating the discontinuity of the

integrand across the cut, we can transform the z-integral (3.20) into (for γ not an

integer)

1

xγ

∫ u1
0

du

π
exp

{−u+ Cγ (xγ)1−γ cos (πγ) uγ} sin {Cγ sin(−πγ) (xγ)1−γ uγ } ,
(3.30)

with

u1 ≡ (βc − β1)(E − ρc V‖)� 1 , (3.31)

within the Hagedorn-singularity-dominance regime. On approximating (3.20) by

means of (3.30) we are neglecting the contribution of a small circle in the contour

around β = βc. This is justified for γ > 0, where the partition function is bounded

near the singularity. The cases γ = −1, 0 will be dealt with exactly below, while
x−1/2 � 1 in all practical cases treated below, so that γ = −1/2 is calculable in the
saddle-point approximation.

The integral (3.30) admits a perturbative expansion in (xγ)
1−γ with a leading

term of order 1/(xγ)
γ . The result is equivalent to the single-long-string picture in

table 1, with a density of states:

Ωlong ≈ f · eβc E+ac V‖

(E − ρc V‖)1+γ
[
1 +O

(
1

V‖(ρ− ρc)2
)
+O

(
f

(E − ρc V‖)γ
)]
. (3.32)

If the critical exponent is an integer, γ = k ≥ 2, the integral (3.30) is replaced by
1

xk

∫ u1
0

du

π
exp

{
−u+ (xk)1−k uk log

(
E − ρc V‖
u

)}
sin
{
π (xk)

1−k uk
}
, (3.33)

with the same leading behaviour as (3.32), but now with corrections of

O ((xk)1−k log(E − ρc V‖)) ∼ O
(

f

(E − ρc V‖)k log(E − ρc V‖)
)
.

This regime is equivalent to eq. (3.4), or table (1) with γ > 1. The formally

defined temperature β = ∂log(Ω)/∂E is larger than the Hagedorn temperature.
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Although the thermodynamics of these systems is ill-defined, there is nothing wrong

in principle with the density of states (3.32) at finite volume, and we will use the

‘thermodynamic’ language and denote these systems as ‘non-limiting’, or NL[γ].

As well as these approximations, there are a number of special cases which can

be evaluated for all xγ . The first and most interesting for our discussion is γ = −1.
Since this case corresponds to open strings in a finite volume, which is naturally

of central importance to our discussion, we shall evaluate this case separately in

subsection 3.3. The two other interesting cases we shall consider now; they are γ = 0

and γ = 1.

Special case γ = 0. The special case γ = 0 admits exact evaluation of the inte-

gral (3.20), resulting in

Ω(γ = 0)c ∼ 1

Γ(f)

eβcE+ac V‖

(E − ρc V‖)1−f
[
1 +O

(
f

V⊥ (ρ− ρc)2
)
−O (e−u1)] , (3.34)

the first correction factor coming from the analytic terms around the Hagedorn sin-

gularity, and the second one coming from the next-to-leading singularity β1. This

formula interpolates between the saddle-point result (3.29), L[0], valid at x0 = f � 1,
and the form (3.32) of NL[0] type, for f � 1.
In the marginal case f = 1, corresponding to closed strings, the limiting or non-

limiting behaviour is controlled by the sign of the correction terms. In this case, the

singularities are isolated poles of the partition function, and the sign of the next-

to-leading singularity correction should be negative, leading to a weakly limiting

behaviour that will be studied in more detail in the next subsection.

Special case γ = 1. Finally, we consider the special case γ = 1, where the

parametrization (3.20) fails. The singular part of the free energy takes the form

logZsing ∼ f (β − βc) log (β − βc) . (3.35)

In the saddle-point approximation, the critical point is located at

log(βs − βc) = −E − ρc V‖
f

− 1 , (3.36)

and the resulting canonical determination of the density of states is:

Ω(γ = 1)saddle ≈ 1√
f
exp

{
βcE + acV‖ − fe−

E−ρcV‖
f

−1− 1
2

(
1 +
E − ρcV‖
f

)
+∆s

}
.

(3.37)

On evaluating β, one finds the marginal case of logarithmically limiting behaviour

seen in table 1. We shall refer to this type of density of states as L[1].
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In fact, the saddle-point approximation has a limited range of applicability, since

‘higher-loop’ corrections are of O(1/f(βs − βc)) and thus we may define the saddle-
point control parameter x1 ∼ f(βs − βc):

x1 ≡ f e−
E−ρc V‖

f = f e−V⊥(ρ−ρc) , (3.38)

the saddle-point approximation being good for x1 � 1. The analytic corrections are
of order

∆s
x1
∼ O (V⊥ e−V⊥(ρ−ρc)) .

In the opposite limit, x1 � 1, a similar treatment to the one in eq. (3.33) gives

Ω(γ = 1)long ≈ f

(E − ρc V‖ − f log f )2 exp
{
βcE + ac V‖

}
, (3.39)

which is of ‘non-limiting’ type: NL[1], with corrections of

O
(

1

V‖(ρ− ρc − V −1⊥ log (f))2

)
+

+O
[(

f

E − ρcV‖ − f log(f)
)
log

(
E − ρcV‖ − f log(f)

f

)]
.

3.2 Closed strings in a finite box

Using these methods, we can now review the results of ref. [8] for closed strings. Let

us consider a box of radius R ≥ 1, with volume VD−1 ∼ RD−1. The corresponding an-
alytic structure is given in eq. (2.59), and we can explicitly evaluate the integral (3.9)

with the result

Ωclosed =
∑
α

(βα)
kα
eβα E+aα VD−1

(kα − 1)! (E − ρα VD−1)
kα−1

[
1 +O

(
(kα − 1)(kα − 2)
VD−1(ρ− ρα)2

)]
.

(3.40)

The corrections come from the analytic terms around each pole, and are absent for

the leading Hagedorn singularity, since kc = 1. From the analysis of ref. [8] we learn

that the next-to-leading singularity of the partition function β1 is a pole of order

k1 = 2D − 2, located at
βc − β1 = η

R2
, (3.41)

with η ∼ +O(1) in string units. The Hagedorn-dominance-rule (H.d.r.) of eq. (3.28)
is given by

(ρ− ρ′c)RD−3 � 1 , (3.42)

which is satisfied for moderately high energy density ρ > ρ′c and large radius, provided
D > 3, or for small radius but very high energy density ρ� 1. In these conditions,
the density of states is approximated by

Ωclosed ≈ βc eβcE+ac VD−1
[
1− (βc VD−1)

2D−3

(2D − 3)! ρ
2D−3 exp

{−η RD−3 (ρ− ρ′c)}
]
,

(3.43)
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Now, in accord with our heuristic argument, in the limit of large R and provided

that the energy density is larger than the Hagedorn density, the energy dependence

of the microcanonical density of states always resembles that for a small compact

system no matter how large the volume we consider. Eq. (3.42) is precisely the

condition E � ε0, and tells us the energy scale above which some of the strings are
able to feel the compactness of the large dimensions by winding.

On using the microcanonical density of states to find the temperature (from

β = ∂ log Ω/∂E) we find

E ≈ ρ′cVD−1 − R2 log
(
(βcE)

3−2D R2(β − βc)
)
. (3.44)

In particular the specific heat,

CV ≈ R2

β − βc , (3.45)

is always positive and the Hagedorn temperature is approached monotonically from

below. Therefore, for closed strings in finite volume, the Hagedorn temperature is

logarithmically limiting, even in the thermodynamic limit forD > 3. Notice that this

limiting behaviour is very weak, since we can rise the temperature arbitrarily close

to the Hagedorn temperature, while maintaining a moderately low energy density,

provided R is large enough. For future reference, we shall denote this behaviour as

‘marginally limiting’: ML.

When D ≤ 3 the H.d.r. is violated at sufficiently large R. In this case we must
use the approximation of non-compact D∞ − 1 ≤ 2 dimensions, the saddle-point
approximation is good, and we get standard L[(D∞− 1)/2] behaviour, in agreement
with the canonical ensemble, and the results of table 1. For these lower-dimensional

systems there is not enough energy available to excite winding modes.

3.3 Open strings on D-branes in a finite box

Now we are ready to present new results for D-brane systems. Since the critical

exponent γ = −1 and the volume factors are independent of the ND+DN moduli,
the discussion can be done in general for all values of ν, as a function of the number

of large DD directions, d⊥, and the volumes V⊥, V‖.
The control parameter for the saddle-point approximation is

x−1 ≡ x = V‖
√
ρ− ρc
V⊥

(3.46)

and the H.d.r. (3.28) for x� 1 is
1� u1

x
∼ √ρ− ρc (R⊥)−2+d⊥/2 . (3.47)

So, for the very high-energy regime

max

(
ρc ,
V⊥
V 2‖
, R4−d⊥⊥

)
� ρ , (3.48)

we find L[−1] behaviour. In particular, this includes all systems with d⊥ = 0.
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On the other hand, for x� 1, the γ = −1 H.d.r. condition reads

1� u1 ∼ (ρ− ρc)V‖
R2⊥

, (3.49)

so that the intermediate range

max

(
ρc ,
R2⊥
V‖

)
� ρ� V⊥

V 2‖
(3.50)

shows a new behaviour characterized by γ = −1 but x � 1. In fact, we can study
the density of states at all values of x, since the integral (3.20) can be evaluated in

closed form by deforming the contour to the steepest descent contour as shown in

figure 1:

Ω(γ = −1)c = βc f x−1 I1(2x) eβc E+ac V‖
[
1 +O

(
x2

V‖(ρ− ρc)2
)
+O (e−u1)] ,

(3.51)

where I1 is the modified Bessel function of the first kind. The saddle-point regime

x � 1 is equivalent to (3.25), and is therefore of L[−1] type, whereas the x � 1
region is marginal from the point of view of the long string picture (3.32). In fact, the

exact expression (3.51) leads to rather standard thermodynamics in both extreme

regimes in terms of the parameter x, with x ∼ 1 marking a cross-over from long-string
dominance on the brane to many windings in the transverse directions.

We can see this when we calculate

x

0.5

0.4

0.3

0.2

0.1

1084 62

- cββ β fc(          )/

Figure 2: Variation of β − βc for open strings
with x = [f (E − ρc V‖)]1/2.

the temperature. Defining

y =
β − βc
fβc

, (3.52)

we find

y =
1

2x

(
I0(2x) + I2(2x)

I1(2x)
− 1
x

)
.

(3.53)

This function, shown in figure 2, has

a tail towards large x giving

βcE ≈ fβ2c
(β − βc)2 . (3.54)

In the notation of table 1, this is equivalent to γ = −1 or Do = dNN . It is the
behaviour of an open-string system which has all DD directions small and compact

(d⊥ = 0), with both the energy and specific heat diverging as we approach the
Hagedorn temperature. This was to be expected from the closed-string case, however

small x gives us a region of different behaviour.
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When x . 1, we find

E ≈ ρc V‖ + 6

fβc
− 12(β − βc)

f 2β2c
. (3.55)

This has a small specific heat as we approach the Hagedorn temperature provided

we can maintain small x. This new type of behaviour is equivalent to keeping the

O(x2) +O(x4) corrections in (3.32), and can be described as ‘weakly limiting’, due
to its small specific heat at Hagedorn temperatures. We shall denote it byWL[−1].
We can obtain a microscopic understanding of this behaviour by examining the

fraction of strings which have energy greater than the single-string threshold energy

ε0, and hence are able to wind. The energy distribution (i.e. the average number of

strings in the gas with an energy in the interval ε→ ε+ dε when the total energy of
the system is E) is given by [8]

D(ε;E) dε = ω(ε)Ω(E − ε)
Ω(E)

dε . (3.56)

The exponent appearing in ω depends on the effective dimension and hence on

whether ε is greater than or less than ε0. Below ε0, the distribution is peaked

with a power law decay that is familiar from the closed-string case. Above ε0 and

for x� 1 we can approximate

D(ε;E) = f βc e−ε x/E . (3.57)

Integrating this expression from ε0 to E gives the total number of energetic strings;

x e−ε0 x/E . (3.58)

eq. (3.28) is equivalent to E � ε0 and x � E/ε. Thus the total energy must

always be larger than the nominal threshold energy required to excite winding modes.

However the number of energetic strings is roughly proportional to x and for x� 1
there are no winding modes, with all the energy being concentrated in short string

excitations close to the D-brane. As we increase the value of x, by raising the energy

for example, we find that a few of the open strings on the brane accumulate most of

the energy in a manner which is similar to closed-string behaviour. As we increase x

still further, these strings are able to wind, and the spectrum becomes increasingly

resolved into a low-energy peak and highly energetic winding modes. The average

energy carried by strings in the low-energy peak becomes saturated as x becomes

large and x ≈ 1 marks a cross-over in behaviour.
It is interesting to see what happens if we increase the volume of the brane. Since

Ω is a monotonically increasing function of V‖, there is always an entropic advantage
in maximizing it. Hence the string gas is expected to spread itself over the whole

available D-brane volume and the volume is expected to increase. As one might have
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expected (since there are no winding modes in the NN directions), for 9-branes the

result is in accord with ref. [12] (based on minimizing the free energy for 9-branes).

However the windings in the DD-directions play an interesting role as can be seen by

the fact that there is an entropic disadvantage in increasing V⊥. Winding modes (and
more generally finite size effects) are seen to prevent DD-directions expanding. A

natural proposal is then that an interplay of these effects can stabilize some directions

whilst allowing others to expand without limit. This is a topic we shall leave for future

study.

If the H.d.r. with γ = −1 is not satisfied, i.e. if the inequalities (3.47) and (3.49)
are violated, then we must approximate the density of states by that of a γ∞ =
−1 + d∞/2 system. In this case, the control parameter for L/NL behaviour is

x∞ ∼
{
V‖ (ρ− ρc)γ∞/γ∞−1 γ∞ 6= 1
V‖ e−(ρ−ρc) γ∞ = 1.

(3.59)

One has NL[γ∞ ≤ 1] if x∞ � 1, and L[γ∞ ≤ 1] if x∞ � 1. On the other hand, for
γ∞ > 1, one always has x∞ � 1 and NL[γ∞ > 1].
There are two main regimes of this kind. The range

max

(
ρc ,
V⊥
V 2‖

)
� ρ� R4−d⊥⊥ , (3.60)

which is only possible for 0 < d⊥ < 4, leads to L[−1 + d⊥/2] with the exception of
the regime ρ� V‖ in d⊥ = 3, which is NL[1/2] instead. Finally, for ‘low’ densities

ρc � ρ� min
(
V⊥
V 2‖
,
R2⊥
V‖

)
(3.61)

one gets NL[−1 + d⊥/2] for d⊥ > 4 and L[−1 + d⊥/2] for 0 < d⊥ ≤ 4, with two
exceptions: the regimes ρ � V‖ in d⊥ = 3 and ρ � log(V‖) in d⊥ = 4, where one
finds also NL[−1 + d⊥/2] behaviour.

3.4 Summary

We may summarize the broad lines of our analysis by distinguishing the two main

high-energy limits of interest.

Extreme high-energy limit. The extreme high-energy regime can be analyzed

in simple terms for all systems. Physically, we expect that at energies much larger

than any scale formed from the T-moduli parameters, the physics should be similar

to the one of a nine-torus of string-scale size and βcE � 1. Then, the H.d.r.

condition (3.28) is trivially satisfied, since β1 − βc ∼ O(1). In such a situation,
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there is no clear distinction between NN and DD directions, as both are of the

order of the string scale and are exchanged by T-duality. We have γ = −1 for the
three basic systems of supersymmetric intersections: ν = 0, 4, 8. Thus, the high-

energy regime βcE � 1 corresponds universally to the L[−1] behaviour. Closed
strings are described by the ML form (3.43). Therefore the entropies S = log(Ωc)

read

Sopen ≈ βcE + 2
√
f E + const.−O(logE)

Sclosed ≈ βcE + const.−E16 e−ηE +O(E15 e−ηE), (3.62)

with f, η ∼ +O(1). So, the open-string systems clearly dominate the finite-volume
asymptotic entropy:

Sopen � Sclosed . (3.63)

Thermodynamic limit. In the thermodynamic limit, we scale V‖ → ∞ with
ρ ≡ E/V‖ fixed and large in string units. Although this limit does not exist in a
strict sense, we shall see in section 5 that very stringent conditions can be imposed

on the string coupling constant such that regimes of approximate thermodynamic

behaviour can be defined. So we proceed with the analysis and find a large variety

of behaviours, depending on the role played by the winding modes. Roughly speak-

ing, if the winding modes are sufficiently quenched, one gets agreement with the

results presented in table 1. On the other hand, if the scaling of the DD directions

is such that winding modes store a sizeable portion of the energy, the behaviour

differs from table 1 and one finds a general tendency towards restoration of limiting

behaviour.

The two main types of behaviour are the single-long-string or NL behaviour,

with entropy density σ ≡ S/V‖ of the form (we keep only the leading terms in the
thermodynamic limit)

σNL[γ] ≈ βc ρ− 1 + γ
V‖
log (ρ), (3.64)

and the various types of ‘limiting’ behaviour L[γ] (dominated by a saddle point)

σL[γ] ≈




βc ρ+ 2

√
ρ

V⊥
if γ = −1

βc ρ +
γ − 1
γ
ρ

γ
γ−1 if γ = −1

2
,
1

2
βc ρ+ log(ρ) if γ = 0

βc ρ− e−ρ if γ = 1 ,

(3.65)

up to positive constants of O(1) in string units.
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The case d⊥ = 0 is always L[−1]. There is universal agreement with the canonical
ensemble results of table 1 for 0 < d⊥ < 4, (for example, a Dp-brane in ten dimensions
with p ≥ 6, or a D0-D8 intersection in ten non-compact dimensions). For d⊥ > 4
however (Dp-branes in ten dimensions with p < 5), it matters whether the winding

modes are quenched, V‖ � R2⊥, giving NL behaviour, or activated into a L[−1]
system for V‖ &

√
V⊥. There is an interesting intermediate window, R2⊥ . V‖ �

√
V⊥,

ofWL[−1] behaviour (3.50), with entropy density

σWL[−1] ≈ βc ρ+ βc f
2
ρ− β

2
c V‖ f

2

24
ρ2 . (3.66)

The critical case d⊥ = 4 (a D5-brane in ten dimensions), is L[1], as in table 1 for
sufficiently large transverse volume, namely V‖ �

√
V⊥, and is L[−1] in the opposite

regime
√
V⊥ . V‖.

Finally, closed strings in the thermodynamic limit have a critical dimension D =

3. For D ≤ 3, we get standard canonical behaviour as in the table 1, L[(D − 1)/2].
On the other hand, for D > 3 winding modes are important enough to turn the

naive NL behaviour announced in table 1 into the ‘marginally limiting’ behaviour

ML with entropy density

σML ≈ βc ρ− ρ2D−3 (VD−1)2D−4 e−ρRD−3 . (3.67)

We see a tendency of the microcanonical, finite-volume analysis to restore lim-

iting behaviour in the thermodynamic limit, even if the naive canonical ensemble

determination predicted non-limiting features. There are a number of exceptions

though, in which NL behaviour survives. Because negative specific heat systems

are often signals of the breakdown of a given microscopic picture, it is worth col-

lecting here all instances in which they appear. At finite ten-dimensional volume,

NL behaviour only shows up for moderately ‘low’ energies, such that winding modes

are quenched, i.e. the situation is analogous to that of closed strings. Examples are

transient regimes with d⊥ ≥ 3 (which restricts to ν = 0, 4):

max

(
ρc , V‖ ,

V⊥
V 2‖

)
� ρ� R⊥ (3.68)

in a d⊥ = 3 system (a D6-brane). It disappears if the transverse space is non-compact
from the outset. The generic NL behaviour appears in the regime

ρc � ρ� min
(
V⊥
V 2‖
,
R2⊥
V‖

)
, (3.69)

with d⊥ > 4. The prototype system is a finite Dp-brane in non-compact transverse
space with p < 5 (as in [19]). The very high energy-density regime of D6-branes
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(ρ � V‖), and D7-branes (ρ � log (V‖)) in non-compact transverse space is also
NL. It is important to notice that all the NL regimes described here are transients

for finite ten-dimensional volume. They become truly asymptotic regimes only in

the case that DD directions are strictly non-compact (which is unphysical unless we

manage to decouple closed strings).

We would like to note that the L behaviour, in which many long strings form,

could indicate that, in an effective manner, the string tension vanishes.

4. Thermodynamic balance

In this section we consider the behaviour of these systems when two or more of them

are in thermal contact. For a given total energy Etot, we would like to find the most

probable partition into components Ei, with∑
i

Ei = Etot . (4.1)

In the free approximation, we must maximize the total entropy

S(Etot) =
∑
i

Si(Ei) (4.2)

under the constraint (4.1).

We have presented in the previous sections approximations for the functions

Si(Ei), valid in a given range of energies, so that the maximization problem is further

restricted by the constraints:

Emin,i � Ei � Emax,i . (4.3)

Conditions (4.1) and (4.3) determine the set D where a given form of the entropy
functions is valid, and the maximization problem is defined. For example, we always

restrict our treatment at least to the Hagedorn regime, ρi > ρc for all components.

If a local maximum exists in the interior of D, we have ∇S = 0 and the standard
equilibrium condition of equality of temperatures,

Ti = Tj , (4.4)

with T−1i = βi = ∂Si/∂Ei. In addition ∇2S < 0, i.e. the specific heats are positive.
If no local maximum is found in the interior of D, the total entropy is maximized
then on the boundary ∂D. In this case, one or several components are pushed to
extreme values of the energy, and the maximization process must be continued with

the extension of the entropy functions to a different patch.

In principle, thermodynamic equilibrium of a single component with negative

specific heat is possible when it is sufficiently large in magnitude, |C−V | > C+V , com-
pared with that of normal systems [33]. Examples of this situation are familiar: large

stars and black holes in equilibrium with radiation in a finite volume.
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Therefore, it is tempting to suppose that our NL systems, with negative spe-

cific heats, can be in equilibrium with the normal systems under some conditions.

However, the formally computed temperatures satisfy

TL < Tc < TNL . (4.5)

Thus, they cannot be in equilibrium and the maximum entropy must occur on the

boundary of D. In particular, for the combined system with Stot = SL + SNL:
∂Stot

∂ENL
= βNL − βL < 0 , (4.6)

and Stot is a monotonically decreasing function of ENL throughout the entire Hage-

dorn regime. Therefore, the entropy is maximized by depleting NL energy in favor

of the L system. Since we have at least one universal limiting system in any back-

ground: the closed strings, we can say that NL systems will have energy densities

of the order of the string scale, which is the minimum energy density for which for-

mula (3.64) holds. At this point the system of NL strings matches to the gas of

massless states at Hagedorn densities.

Given that NL systems will be suppressed, we now turn to discuss the equilib-

rium conditions for the various L systems. From (3.65) we find the energy densities,

as a function of the temperature

ρL[γ] ≈


V −1⊥ (β − βc)−2 if γ = −1
(β − βc)γ−1 if −1 < γ < 1
− log(β − βc) if γ = 1 .

(4.7)

So, close to the Hagedorn temperature, the L[γ] systems with smaller γ have hierar-

chically larger energy densities.

The energy density of theWL[−1] system

ρWL ≈ V⊥
V 2‖
− 2V

2
⊥
V 3‖
(β − βc) (4.8)

has a maximum of order V⊥/V 2‖ � 1, according to (3.50). If this limit is exceeded,
the density of states of such systems takes the L[−1] form. So, ultimately, very
close to the Hagedorn temperature, the energy density in the form of WL systems

is negligible compared to that in L systems.

The remaining system with a weak limiting behaviour is the closed-string sector

with D > 3, whose energy density satisfies

ρML ≈ (2D − 3)R3−D log (VD−1 ρML)−R3−D log
(
R2(β − βc)

)
. (4.9)

This system is by far the weaker limiting system if R is large enough, since Hagedorn

temperatures can be achieved with ρ & ρc ∼ O(1). The same condition for all the
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other systems requires ρL → ∞ or ρWL ∼ V⊥/V 2‖ � 1. Therefore, we find the
following hierarchy of energy densities in the thermodynamic limit:

O(1) ∼ ρNL � ρML � ρWL � ρL . (4.10)

Within L systems, the one with smaller γ wins. Similarly, within NL systems, the

one with larger γ is expected to lose energy faster when put in thermal contact with

a L system.

In the extremely high-energy regime, both open and closed sectors are limiting.

Using the forms in (3.62), we have again a clear dominance of the open-string sector.

The energies in equilibrium satisfy

Eopen ≈ e
2 η Ecl

(Ecl)34
, (4.11)

so that we get the hierarchy

O(1)� Eclosed � Eopen , (4.12)

for E > O(102). In the conclusions we shall discuss the possible implication for
models of early cosmology.

There is another situation not covered by the previous discussion with some

theoretical interest. Suppose we can completely decouple the closed-string and D-

brane sectors at all energy scales (in particular at Hagedorn energy densities). This

can be achieved by taking N Dp-branes in the large N limit, with gsN < 1 and fixed.

The effective open-string coupling remains finite while the open-closed and closed-

closed coupling vanishes. In this case all extensive quantities in the open-string sector

scale to leading order as O(N2) in the large N limit. Then, if the transverse space is
effectively non-compact and γ∞ > 1 we have a truly dominating NL system, because
now it makes sense to concentrate only on the open-string sector, as totally decoupled

from closed strings. In this situation we can consider the balance between two such

NL systems. For example, in D0-D4 intersections with infinite DD directions, there

is a balance between ν = 0 strings and ν = 4 strings, all of them NL in infinite

transverse volume.

The maximization of the entropy of such a pair

S(E) ≈ βcE − (1 + γ1) logE1 − (1 + γ2) logE2 , (4.13)

under the condition E1 , E2 > O(1), at fixed E = E1 + E2, is achieved with almost
all the energy in the component with smallest γ. So, in the previous examples, ν = 0

systems with the largest possible world-volume dimensionality still store almost all

the energy even if they are NL.
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5. Beyond the ideal gas regime

In the previous sections we have studied aspects of Hagedorn regimes in various

string systems, always in the ideal-gas approximation, given by the one-loop string

diagrams. The question of the effect of interactions in the string thermodynamic

ensemble is a notorious one. From a fundamental point of view, it is important to

know what lies ‘beyond’ Hagedorn, under the assumption that there is some analogy

with the QCD deconfining transition. Namely, is there a phase transition to a regime

where ‘string constituents’ are liberated?

In the context of fundamental string theories this question is particularly elusive.

For example, the presence of gravity automatically invalidates any naive discussion

based on the canonical ensemble, or even the microcanonical ensemble in the ther-

modynamic (infinite volume) limit. Gravitational forces have long range and cannot

be screened, so that extensivity cannot be taken for granted. Also, a finite energy

density causes a back-reaction of the geometry. For a given total energy E, the

largest volume that can be considered approximately static is the Jeans volume:

VJeans ∼ (GD E)D−1D−3 (5.1)

in D − 1 spatial dimensions, with effective Newton constant GD. The associated
length scale (VJeans)

1/D−1 is the equivalent Schwarzschild radius for this energy. So,
the idea that a black-hole phase lies ‘beyond’ Hagedorn (in the sense of large coupling

or large energy) is rather natural. We shall pursue here this line of thought, without

a precise specification of what the implications would be for a ‘constituent picture’

of the string.

A step in this direction is the correspondence principle of ref. [24]. A wide variety

of black holes in string theory can be adiabatically matched to various perturbative

string states by appropriately choosing the string coupling constant. The matching

point can be locally defined by the condition that the supergravity description of

the black-hole horizon breaks down due to large α′-corrections. Then, both the
mass and the entropy of the black hole can be matched at this point within O(1)
accuracy of the coefficients. Under this correspondence, Schwarzschild black holes

match onto highly excited (long) fundamental strings, whereas D-branes match onto

qualitatively different kinds of black holes depending on the amount of energy on the

D-brane world-volume. For a system of N Dp-branes at the same point in transverse

space, the classical black-brane solution is characterized by two radii: a charge radius

(rQ)
7−p = gsN (5.2)

in string units, and the standard horizon radius r0. In the near-extremal regime,

r0 � rQ, the black-brane state matches onto a thermal state of open-string massless
excitations, i.e. the Yang-Mills gas on the D-brane world-volume. On the other

38



J
H
E
P
0
4
(
1
9
9
9
)
0
1
5

hand, in the opposite Schwarzschild limit r0 � rQ, the black brane matches onto a
long-open-string state on the D-brane world-volume. The correspondence principle

works in a variety of cases, and agrees with exact microscopic determinations of the

black-hole entropy in those cases protected by supersymmetry.

These arguments are intended to apply to finite-energy states of the string theory

defined by an asymptotic Minkowski vacuum. In particular, the perturbative long-

string states are assumed to be mostly single-string states. On the other hand, the

single-string-dominance picture of a stringy thermal ensemble suggests that perhaps

the correspondence principle could be applied to the full thermal ensemble. Strictly

speaking, such a statement cannot be literally true because of the ill-defined nature

of the thermal ensemble in the presence of gravity. However, the microcanonical

density of states calculated for all Hagedorn ensembles studied in this paper shows

a leading linear behaviour for the entropy:

S(E)Hag = βcE + subleading , (5.3)

just as in the single-string picture. Based on this, we shall propose that the cor-

respondence principle applies provided the typical thermal state in the Hagedorn

regime can be defined as an approximately stable state. The minimal requirement

for this is to work at finite volume, well within the Jeans bound, and to use the mi-

crocanonical description. One then finds that at sufficiently high energy, for a given

fixed value of the string coupling, the most likely state of the system is a black-brane

or black-hole state. The condition that the energy does not exceed the Jeans bound

is then equivalent to the requirement that a black hole of that mass fits inside the

given volume. Thus, the Jeans bound, when applied to a finite-volume system, be-

comes roughly equivalent to the holographic bound (a black hole fills all the available

volume, and the corresponding entropy gives the maximal information capacity of

this background):

E < EHol ∼ V
D−3
D−1

GD
. (5.4)

The interesting aspect of this mild extension of the correspondence principle is

that the matching point (the transition from the perturbative string states to the

black-states) is different from the Jeans bound. The correspondence point is defined

by the matching of the entropies:

S(E)Hag ∼ S(E)black . (5.5)

This condition defines a critical energy as a function of the string coupling, different

from the Jeans curve. Naively, this curve is just the transition line between a single

long string and a single black hole. In the thermal gas however, we have seen many

instances in which the thermal ensemble is not dominated by a single long string

but the energy is distributed in a gas of long strings. In these cases, it may be
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reasonable to apply the correspondence principle to each individual string in the

thermal gas. However, these subtleties are irrelevant to the level of accuracy we can

achieve, because the correspondence matching itself is only known up to O(1) factors
in the entropy and the energy. The distinctions between single-long-strings and multi-

long-strings (NL versus L), or single- versus multi-black-holes, only show up in the

subleading terms in the entropy, and are thus beyond our matching accuracy.

For a system of N Dp-branes with longitudinal volume V‖ in a torus of nine-
volume V = V‖V⊥, there are a number of ‘phases’ that can be identified on the basis
of the correspondence principle, applied to the typical states both in the bulk and

in the world-volume. That is, we label a ‘phase’ by those degrees of freedom with

highest entropy, among those that coexist in the thermal ensemble for a given value

of the moduli and the total energy.

5.1 Bulk phase diagram

A supergravity gas in ten dimensions has entropy

S(E)sgr ∼ V 1/10 E9/10 (5.6)

and can be matched to a bulk black hole with entropy

S(E)bh ∼ E (g2s E)1/7 . (5.7)

The coexistence line Ssgr ∼ Sbh gives a black hole in equilibrium with radiation in a
finite volume, with energy of order

E(sgr↔ bh) ∼ 1
g2s
(g2s V )

7/17 , (5.8)

and microcanonical temperature

T (sgr↔ bh) ∼
(
1

g2s V

)1/17
. (5.9)

Since the black-hole-dominated region has negative specific heat, this temperature

is maximal in the vicinity of the transition. This configuration is microcanonically

stable in finite volume, in a range of energies between the matching point and the

Jeans bound [34].

The graviton gas can also be matched to a gas of long closed strings. The coex-

istence curve Ssgr ∼ SHag at temperatures T ∼ O(1) in string units, is independent
of the string coupling and is given by the Hagedorn energy density:

E(sgr↔ Hag) ∼ V . (5.10)
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This Hagedorn phase can be exited at high energy or large coupling through the

correspondence curve SHag ∼ Sbh (eq. (5.5)):

E(bh↔ Hag) ∼ 1
g2s
, (5.11)

into a black-hole dominated phase at lower temperatures. The resulting phase dia-

gram for the bulk or closed-string sector is depicted in figure 3.

An interesting feature of this dia-

Sugra

Black
Hole

Holographic
Bound

Hag

E

gs

Figure 3: Bulk phase diagram. Only the re-

gion gs < 1 is represented. The triple point

separating the supergravity gas, black hole,

and Hagedorn-dominated regimes is located

at gs ∼ 1/
√
V , and E ∼ V . The right-

most region is excluded by the holographic

bound (5.12).

gram is the existence of a triple point

at the intersection of the phase bound-

aries of the massless supergravity gas,

Hagedorn, and black-hole-dominated re-

gimes. This point lies at Hagedorn en-

ergy density Ec ∼ V , string scale tem-
peratures T ∼ O(1), and considerably
weak coupling gs ∼ 1/

√
V and, some-

what optimistically, we would like to in-

terpret its existence as evidence for com-

pleteness of this phase structure. Name-

ly, we are not missing any major set of

degrees of freedom. According to this

picture, the Hagedorn phase goes into a

black-hole-dominated phase at large en-

ergy or coupling, well within the Jeans

or holographic bound:

E < EHol ∼ V
7/9

g2s
, (5.12)

provided we are at weak string coupling

gs < 1. We see that the Hagedorn regime has no thermodynamic limit whatsoever. If

we scale the total energy E linearly with the volume, we run into the black-hole phase,

which ends when the horizon crushes the walls of the box (i.e. the black hole fills the

box). Moreover, if the string coupling is larger that 1/
√
V , we miss the Hagedorn

phase altogether, as the supergravity gas goes into the black-hole-dominated phase

directly. In this case, the system has a sub-stringy maximum temperature

Tmax ∼ T (sgr↔ bh) < 1 . (5.13)

5.2 World-volume phase diagram

Similar remarks apply to the open-string sector in the vicinity of the D-branes. Here,

the details of the correspondence principle depend on the excitation energy of the D-

brane, i.e. in the geometric picture, we must distinguish between the near-extremal

(r0 � rQ) and non-extremal or Schwarzschild (r0 � rQ) regimes.
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Before proceeding further, it is important to notice that Dp-branes with p > 6

cannot be considered as well-defined asymptotic states in weakly-coupled string the-

ory. The massless fields specifying the closed-string vacuum, including the dilaton,

grow with transverse distance to the D-brane. As a consequence, introducing a p > 6

Dp-brane in a given perturbative background inevitably results in a non-perturbative

modification of the vacuum itself. Thus, consistency with the requirement of weak

string coupling throughout the system means that such branes are never far from

orientifold boundaries, and should be better considered as part of the specification

of the background geometry. In the following, we shall restrict to p < 7, unless spec-

ified otherwise.

The matching of the near-extremal (r0 � rQ) black-brane entropy or Anti- de
Sitter (AdS) throats8

S(E)AdSp+2 ∼ N1/2 (V‖)
5−p
2(7−p) g

p−3
2(7−p)
s E

9−p
2(7−p) (5.14)

to a weakly-coupled Yang-Mills gas on the world-volume:

S(E)SYMp+1 ∼ N
2
p+1 (V‖)

1
p+1 E

p
p+1 , (5.15)

is the content of the generalized SYM/AdS correspondence [25], and was studied in

detail in [26, 19, 36].

There are interesting finite-size effects at low temperatures, T . 1/R‖, in the
form of large N phase transitions of the gauge theory. For p = 3 and spherical

topology of the brane world-volume, the gravitational counterpart is the Hawking-

Page transition [37, 38] between the AdS black-hole geometry and the AdS vacuum

geometry (intermediate metastable phases can be found [39]). For our case (p < 7

and toroidal topology of the branes) the finite-size effects setting in at the energy

threshold E . N2/R‖ are associated to the transition to zero-mode dynamics in the
Yang-Mills language and to finite-volume localization [40] in the black-hole language.

At sufficiently low temperatures one must use a T-dual description of the throat,

resulting in an effective geometry of ‘smeared’ D0-branes. When these D0-branes

localize as in [40] the description involves an AdS-type throat with p = 0, which we

denote by AdS2. In this case of toroidal topology, there is no regime of vacuum AdS

dominance, provided N is large enough [19, 41]. We refer the reader to [19, 36, 41]

for a detailed discussion of such low-temperature phenomena.

At temperatures T > 1/R‖ these finite-size effects can be neglected, and the
SYM/AdS transition is determined by the matching of (5.14) and (5.15). The tran-

sition temperature,
T (SYMp+1 ↔ AdSp+2) ∼ (gsN) 1

3−p , (5.16)

is smaller than the Hagedorn temperature as long as stringy energy densities are not

reached in the world-volume.
8We denote the throat geometries that control the entropy by AdS, even if they are not strictly

AdS unless p = 3. One can find a conformal transformation mapping the throat geometry to an

AdSp+2 for any p, [35].
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At this point, it should be noted that the interpretation of the AdS throats as

SYM dynamics at large ’t Hooft coupling (the standard AdS/SYM correspondence)

is problematic for p = 5, 6. For p = 5, the AdS regime has a density of states typical

of a string theory, with renormalized tension Teff = 1/α
′ gsN (see [42]). For p = 6 the

qualitative features of the thermodynamics of the near-extremal and Schwarzschild

regimes are essentially the same, so that the boundary r0 ∼ rQ does not mark a
significant change in behaviour. The holography properties required to interpret

the AdS physics only in terms of gauge-theory dynamics seem to break down for

these cases [43, 44, 45, 19, 46]. However, the SYM/AdS correspondence line in the

sense of [24] can always be defined, independently of whether there is a candidate

microscopic interpretation for the entropy (5.14) in the AdS regime.

At stringy energy densities E ∼ N2 V‖, the SYM/AdS correspondence line joins
the open-string Hagedorn regime. The transition from a Yang-Mills gas on the world-

volume to a Hagedorn regime of open strings (SSYM ∼ SHag) occurs at the energy

E(SYMp+1 ↔ Hag) ∼ N2 V‖ . (5.17)

This line joins the SYM/AdS correspondence curve at a triple point (see figure 4),

the other phase boundary being the correspondence curve between the long open

strings in the Hagedorn phase, and in the non-extremal black-brane phase. Black

Dp-branes in the Schwarzschild regime (r0 � rQ) have entropy:

S(E)Bp ∼ E
(
g2sE

V‖

) 1
7−p
. (5.18)

and match the world-volume Hagedorn phase along the curve:

E(Hag↔ Bp) ∼ V‖
g2s
. (5.19)

Notice that the boundary line separating the near-extremal (AdS) and Schwarz-

schild (Bp) regimes of the black branes, given by r0 ∼ rQ, or

E(AdSp+2 ↔ Bp) ∼ N V‖
gs
, (5.20)

also joins the triple point located at E ∼ N2 V‖ and gsN ∼ 1. The temperature
along this line is

T (AdSp+2 ↔ Bp) ∼
(
1

gsN

) 1
7−p
. (5.21)

This temperature is locally maximal for small energy variations if p < 5.
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All these phases lie well within the

AdS
p+2

AdS
2

 SYM
p+1

SYM
1

Hag

Black
Dp-brane

Holographic
Bound

E

gs

Figure 4: World-Volume phase diagram for

gs < 1. Thick lines represent semiclassical

phase transitions or correspondence curves

with a major change in the degrees of free-

dom, whereas dashed lines represent smooth

cross-overs within the same basic descrip-

tion. The triple point at low energies was

studied in [19]; it lies at gs ∼ Rp−3‖ /N ,

E ∼ N2/R‖, and is due to finite-size effects
in the Yang-Mills theory. The triple point at

Hagedorn energies is located at gs ∼ 1/N and
E ∼ N2 V‖. The dotted line within the Hage-
dorn region represents the D-brane bare-mass

threshold, E ∼ N V‖/gs. Again, the right-
most region is excluded by the holographic

bound (5.22).

holographic bound, defined by the condi-

tion that the horizon of the black brane

saturates the available transverse volu-

me:

E < EHol ∼ V‖
g2s
· (V⊥)

7−p
9−p . (5.22)

Notice that this holographic condition is

numerically equivalent to the bulk ho-

lographic bound (5.12) for an isotropic

box V ∼ R9.
A major difference from the closed-

string sector studied in the previous sub-

section is the possibility of defining a

world-volume thermodynamic limit, pro-

vided the holographic bound (5.22) is

satisfied, i.e. if the world-volume energy

density ρ‖ = E/V‖ satisfies

1� ρ‖ � 1

g2s
, (5.23)

there is a thermodynamic limit V‖ →∞
with V⊥ fixed and a Hagedorn regime in
the world-volume. On the other hand, if

1

g2s
� ρ‖ � (R⊥)

7−p

g2s
, (5.24)

there is a thermodynamic limit with the

open-string system described by an infi-

nite black brane. As pointed out before,

the closed-string sector does not have such thermodynamic limits at fixed coupling,

and there is no way we can decouple it completely unless we also scale the string cou-

pling to zero. Therefore, the combined system does not have thermodynamic limits

at fixed string coupling, no matter how small. An effective decoupling of open- and

closed-string sectors can be achieved however in the large N limit with the effective

open-string coupling gsN held fixed.

A brane plasma phase? Notice that the transition between the near-extremal

and non-extremal metrics (5.20), if continued into the Hagedorn regime, leads to a

line where the energy density on the D-brane world-volume is of the order of the
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intrinsic tension of the brane:

E ∼ N V‖
gs
. (5.25)

The accumulation of energy in the D-brane world-volume at the expense of the bulk

is more efficient for the case of limiting Dp-branes with γ < 1. For these systems,

the world-volume energy density in long open strings near the Hagedorn temperature

diverges as in eq. (4.7), ρ ∼ (β − βc)γ−1. Comparing with the intrinsic tension [13]
(in string units α′ = 1)

TDp =
1

(2π)p gs
, (5.26)

we can see that at (
β − βc
βc

)γ−1
≈ 1
gs

(5.27)

the thermal energy is of the same order of magnitude as the rest mass. At this point

our treatment of D-branes as semiclassical objects, quantized in a non-relativistic

approximation, may break down. So, any physical picture of this region is neccesarily

very conjectural.

A possible mechanism setting in at these energy densities is the production of a

plasma of branes and antibranes effectively screening the R-R charge. In principle

this screening could be described by a Higgs-like phase in the low-energy theory of

forms. However, since we are at weak coupling, creating such a plasma would seem to

be an energetically very expensive way to disperse the charge. Nevertheless one can

see that it might be possible, at least for D-branes with divergent free energy near

the Hagedorn temperature. The thermodynamic condition for chemical potentials of

D-branes µ+ and anti D-branes µ− in equilibrium D+D̄ ↔ X, where X are massless
NS-NS and R-R fields, is determined in a standard way

µ+ + µ− = 0 , (5.28)

because chemical potentials for massless fields in equilibrium are zero. If we have a

large number of pairs produced we can assume that µ+ = µ− = 0, so our plasma
must have zero chemical potential. Treating branes as some kind of particles with

internal structure (which is given by an excitation spectrum of open strings) one can

calculate the chemical potential

µ ∼ log

V⊥
N

∑
~p⊥,n

e−βE(~p⊥,n)


 , (5.29)

where we have assumed that branes are described by Boltzman statistics [47]. One

can show that Fermi or Bose statistics are not going to qualitatively change the

picture in the weak-coupling limit. Here the sum is over all quantum numbers of

a single brane including momentum ~p⊥ in DD directions and open-string quantum
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numbers n. E(~p⊥, n) ≈ MDp + ~p 2⊥/2MDp + εn, where MDp = TDpV‖ is the rest mass
of the Dp-brane. If µ = 0 we have

N

V⊥
∼ e−βMDp

∑
n

e−β εn
∫
d~p⊥ e−β ~p

2
⊥ /2MDp , (5.30)

where
∑
n e
−β εn = e−βFp is a statistical sum of open strings on the Dp-brane we are

considering. After integration we have

N

V⊥
∼ e−β(MDp+Fp)

(
MDp

β

)d⊥/2
. (5.31)

Because both MDp and Fp are proportional to V‖ they both survive in the thermo-
dynamic limit of large world-volume and may be suppressed only when MDp + Fp is

positive. It is clear that for all systems with divergent Fp (which is negative !) this is

not true near the Hagedorn temperature and we can have unsuppressed production

of pairs. This is the case of p > 6 branes. The situation with other branes depends

on a balance between MDp and Fp — in a very similar way (but not exactly the

same) as for the energy density. We can speculate that for some still small couplings

there is unsuppressed production of other branes too.

The present analysis of pair-production processes used a dilute-gas picture in

the transverse directions. Therefore, in the light of the comments at the begining of

section 5.2, it might require very stringent conditions on the string coupling in order

to consistently apply to p > 6 Dp-branes.

5.3 Thermodynamic balance

With these results at hand we can discuss the general features of the thermodynamic

balance between the bulk and world-volume components in the full weak-coupling

parameter space.

When the combined system enters the Hagedorn phase in equilibrium, at tem-

peratures of order T ∼ O(1), our main result in the previous sections

SHag open � SHag closed , (5.32)

implies that most of the energy is stored in long open strings, with the energy density

of closed strings kept close to the critical density Eclosed & V (if the volume is large
enough). Thus, as long as the temperature is of the order of the string scale, the

closed-string sector has a maximal energy density of the order of the string scale.

This means that the system will have a tendency to exit the Hagedorn phase with

most of the energy concentrated in the world-volume sector, into the black-brane

phase rather than the bulk black-hole phase.
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Since the black-phases have negative specific heat, the maximal temperature of

the combined system is achieved in the Hagedorn regimes and is Tmax ∼ O(1). The
condition for the combined system to enter the Hagedorn phase is that the coupling

be sufficiently small:

gs < min

(
1√
V
,
1

N

)
. (5.33)

If the string coupling violates this bound, the combined system fails to enter the

Hagedorn regime and have a sub-stringy maximal temperature as we increase the

total energy. The maximal temperature of the bulk is

Tclosed max ∼
(
1

g2sV

)1/17
< 1 (5.34)

if (5.33) holds, while the maximal temperature of the boundary sector is

Topen max ∼ max
(
(gsN)

1/3−p , (gsN)1/p−7
)
< 1 . (5.35)

Since both sectors are supposedly in equilibrium, which of the two maximal temper-

atures is attained depends on the detailed values of the moduli and coupling.

For phenomenological applications based on weakly-coupled brane-models we

always demand the brane sector to be perturbative, due to the phenomenological

requirement of weak gauge couplings in the Standard Model gauge group, and the

technical requirement of calculability. So, in this context we always work with brane

sectors satisfying gsN < 1. Under these conditions, the bound (5.33) depends only

on the total volume for closed-string propagation. The critical point at g2s V ∼ 1 was
derived in subsection 5.1 for a nine-dimensional box. In fact, it is independent of the

number of large dimensions available for closed-string propagation. The equilibrium

between a supergravity gas in D space-time dimensions with entropy

S(E)sgr ∼ (VD−1) 1D E D−1
D (5.36)

and a black hole,

S(E)bh ∼ E (g2sE)
1

D−3 , (5.37)

occurs at energies

E(sgr↔ bh) ∼ 1
g2s
(VD−1)

D−3
2D−3 , (5.38)

and the resulting maximal temperature is of order

T (sgr↔ bh) ∼
(

1

g2s VD−1

) 1
2D−3

, (5.39)

leading to the same critical coupling for all values of D. Thus, we see that a cosmo-

logical weakly-coupled Hagedorn regime, with temperatures of O(1) in string units,
is only possible for a sufficiently small universe. We would be led then to a scenario of

the type studied in [7], with the difference that open strings dominate the Hagedorn

regime.
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6. Concluding remarks

In this paper we have presented a general study of the thermodynamics of strings

propagating in D-branes backgrounds. Particular attention has been paid to the

Hagedorn regime and the associated long-string behaviour at weak string coupling

where the free (ideal gas) approximation is accurate.

We have stressed that, in any well defined ensemble, winding modes are central

to the behaviour of the system. This is because the classic problems one faces in

defining a satisfactory thermal ensemble (the Jeans instability for example) can only

be bypassed by working at finite volume. Only at finite volume does it make sense

to define an approximate thermodynamic limit.

We discussed the thermodynamic behaviour in a toroidally compactified space

by applying the powerful calculational techniques of ref. [8] to general string sectors

in D-brane backgrounds. As expected we find that a pivotal role is played by the

effect of winding modes. For example, in a gas of open strings on an isolated D-brane,

if the volume of large winding-supporting dimensions (DD directions) is sufficently

large compared to the world-volume (NN directions), namely V‖ <
√
V⊥, then the

windings are ‘deactivated’ and the thermodynamics is well described by the non-

compact approximation [19], with limiting behaviour for Dp-branes with p ≥ 5,
and non-limiting, negative specific heat for p < 5. On the other hand when V‖ >√
V⊥ windings tend to be ‘activated’ and the Hagedorn temperature is limiting with
positive specific heat. Moreover, the Hagedorn behaviour switches on when a critical

density is reached on the brane (or intersection).

We also compared the thermodynamics of different systems and showed that

those which are approximated by a non-limiting density of states are thermodynam-

ically subleading compared to limiting systems. Since closed strings are a universal

limiting system (in a finite volume), we find that all non-limiting transient behaviour

is suppressed in the full thermal ensemble. Also we found that, in a given intersec-

tion, open strings on parallel branes (ν = 0) of the largest dimensionality dominate

the thermodynamics.

Armed with the correspondence principle of ref. [24] and its generalizations, we

ventured into the speculative terrain beyond the ideal-gas approximation. Under

some assumptions, we were able to build a consistent qualitative phase diagram,

which used the degrees of freedom present in weakly-coupled string theory (funda-

mental strings and D-branes), together with the necessary ingredient to satisfy the

holographic bound (i.e. a black-hole-dominated phase). The main feature of these

phase diagrams is that Hagedorn phases are bounded by black-hole-dominated phases

at large energy or coupling.

A remaining bone of contention is the fact that the non-relativistic approxima-

tion for the D-brane quantization could break down within the Hagedorn regime,

before the energy density is large enough to match to a black brane. This question
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might depend on a detailed study of the contribution of collective coordinates of

the D-branes to the thermodynamics. Such a study is for the moment beyond our

capabilities, although some ingredients were laid out at the end of section 5. We

argued that, for sufficiently small string coupling, a plasma of brane-antibrane pairs

might be produced, with local screening of R-R charge.

Our results may have some relevance to cosmology of D-brane backgrounds so

let us conclude with some more speculative remarks concerning earlier and possible

future work in this area. One interesting issue which was discussed in the context

of closed strings was the possibility of explaining the choice of four dimensions from

Hagedorn behaviour. How does the presence of D-branes effect this question? First,

we should emphasize that the dominance of open strings is true even in the most

extreme case of an initially small universe where all the dimensions are of O(1).
Such a case was examined in ref. [7] where it was suggested that a small universe

dominated by closed-string winding modes would have been unable to expand unless

the winding modes annihilated. For closed strings, annihilation is virtually impossible

unless D ≤ 4 space-time dimensions are large. Here we have seen that when there are
D-branes, at least in the weak coupling approximation that we have been using here,

most of the energy flows into open strings on the brane even for modest energies.

In addition, it is only possible to be in the long-string regime at very weak coupling

where the cosmology is expected to be dominated by the tension of the D-brane

itself. Hence there seem to be no regions where this type of scenario is applicable.

This is probably the appropriate point to introduce an alternative (and equally

speculative) idea to explain four (or at least the low number of) space-time dimen-

sions. This might be called the ‘melting’ scenario. We have seen that when the

DD directions are large, the thermodynamic behaviour is very different for p < 5

and p ≥ 5 branes. Hence, in a universe full of different dimensionality D-branes,
the higher-dimensional limiting D-branes attract all the energy of the system until

they ‘melt’, when the energy density in their world-volumes is sufficiently large. This

would leave only the low-dimensional p < 5 branes which, as we have seen, are non-

limiting in the Hagedorn regime (i.e. they can be close to the Hagedorn temperature

with only a finite energy density) and therefore able to survive. There are however

two possibly fatal objections to this scenario. First, for it to make sense one should

be able to build the D-branes themselves as ‘bound states’ of fundamental strings.

The R-R charge could disappear if it has only a dynamical, low-energy, meaning. A

nice example of this would be the thermal ‘un-wrapping’ of the magnetic charge of

a ’t Hooft-Polyakov monopole gas at sufficiently high temperatures. Unfortunately,

in the case of R-R charge and D-branes, we have no evidence that the correspond-

ing conserved charges can be dynamically ‘unwrapped’, at least in a context where

the bare string coupling is kept small. The reason is that R-R charges are related

to Kaluza-Klein momenta through dualities, and the ‘unwrapping’ of Kaluza-Klein

momenta requires some non-perturbative background dynamics (topology change).
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As well as this technical problem, there is a more serious conceptual problem with

the ‘melting’ idea. If we are willing to believe that D6-branes ‘melt’ as the universe

contracts and energy densities become very large, we have to accept that D6-branes

can ‘condense’ out as the universe expands and cools down from a very dense stage.

Hence, without a rigorous knowledge of what happens to the D-branes after they

‘melt’, this idea remains extremely speculative.

More generally, however, it is clear that the Hagedorn regime is a rich source

of cosmological possibilities and in particular gives an interesting new kind of dise-

quilibrium; a D-brane ‘formed’ in a hot gas of closed strings will inevitably attract

all the bulk entropy onto its surface. Any new source of disequilibrium is of great

interest for both baryogenesis and inflation.
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