1,633 research outputs found

    Deformation of canonical morphisms and the moduli of surfaces of general type

    Get PDF
    In this article we study the deformation of finite maps and show how to use this deformation theory to construct varieties with given invariants in a projective space. Among other things, we prove a criterion that determines when a finite map can be deformed to a one--to--one map. We use this criterion to construct new simple canonical surfaces with different c12c_1^2 and χ\chi. Our general results enable us to describe some new components of the moduli of surfaces of general type. We also find infinitely many moduli spaces M(x,0,y)\mathcal M_{(x',0,y)} having one component whose general point corresponds to a canonically embedded surface and another component whose general point corresponds to a surface whose canonical map is a degree 2 morphism.Comment: 32 pages. Final version with some simplifications and clarifications in the exposition. To appear in Invent. Math. (the final publication is available at springerlink.com

    Heterozygous mis-sense mutations in Prkcb as a critical determinant of anti-polysaccharide antibody formation

    Get PDF
    To identify rate-limiting steps in T cell-independent type 2 (TI-2) antibody production against polysaccharide antigens, we performed a genome-wide screen by immunizing several hundred pedigrees of C57BL/6 mice segregating ENU-induced mis-sense mutations. Two independent mutations, Tilcara and Untied, were isolated that semi-dominantly diminished antibody against polysaccharide but not protein antigens. Both mutations resulted from single amino acid substitutions within the kinase domain of Protein Kinase C Beta (PKCβ). In Tilcara, a Ser552>Pro mutation occurred in helix G, in close proximity to a docking site for the inhibitory N-terminal pseudosubstrate domain of the enzyme, resulting in almost complete loss of active, autophosphorylated PKCβI whereas the amount of alternatively spliced PKCβII protein was not markedly reduced. Circulating B cell subsets were normal and acute responses to BCR-stimulation such as CD25 induction and initiation of DNA synthesis were only measurably diminished in Tilcara homozygotes, whereas the fraction of cells that had divided multiple times was decreased to an intermediate degree in heterozygotes. These results, coupled with evidence of numerous mis-sense PRKCB mutations in the human genome, identify Prkcb as a genetically sensitive step likely to contribute substantially to population variability in anti-polysaccharide antibody levels

    Triple canonical covers of varieties of minimal degree.

    Get PDF
    In this article we study pluriregular varieties X of general type with base-point-free canonical bundle whose canonical morphism has degree 3 and maps X onto a variety of minimal degree Y. We carry out our study from two different perspectives. First we study in Section 2 and Section 3 the canonical ring of X describing completely the degrees of its minimal generators. We apply this to the study of the projective normality of the images of the pluricanonical morphisms of X. Our study of the canonical ring of X also shows that, if the dimension of X is greater than or equal to 3, there does not exist a converse to a theorem of M. Green that bounds the degree of the generators of the canonical ring of X. This is in sharp contrast with the situation in dimension 2 where such converse exists, as proved by the authors in a previous work. Second, we study in Section 4, the structure of the canonical morphism of X. We use this to show among other things the nonexistence of some a priori plausible examples of triple canonical covers of varieties of minimal degree. We also characterize the targets of flat canonical covers of varieties of minimal degree. Some of the results of Section 4 are more general and apply to varieties X which are not necessarily regular, and to targets Y that are scrolls which are not of minimal degree

    Instability of dilute granular flow on rough slope

    Full text link
    We study numerically the stability of granular flow on a rough slope in collisional flow regime in the two-dimension. We examine the density dependence of the flowing behavior in low density region, and demonstrate that the particle collisions stabilize the flow above a certain density in the parameter region where a single particle shows an accelerated behavior. Within this parameter regime, however, the uniform flow is only metastable and is shown to be unstable against clustering when the particle density is not high enough.Comment: 4 pages, 6 figures, submitted to J. Phys. Soc. Jpn.; Fig. 2 replaced; references added; comments added; misprints correcte

    Fluctuation of the Top Location and Avalanches in the Formation Process of a Sandpile

    Full text link
    We investigate the formation processes of a sandpile using numerical simulation. We find a new relation between the fluctuation of the motion of the top and the surface state of a sandpile. The top moves frequently as particles are fed one by one every time interval T. The time series of the top location has the power spectrum which obeys a power law, S(f)~f^{\alpha}, and its exponent \alpha depends on T and the system size w. The surface state is characterized by two time scales; the lifetime of an avalanche, T_{a}, and the time required to cause an avalanche, T_{s}. The surface state is fluid-like when T_{a}~T_{s}, and it is solid-like when T_{a}<<T_{s}. Our numerical results show that \alpha is a function of T_{s}/T_{a}.Comment: 15 pages, 13 figure

    The clockfront and wavefront model revisited

    Get PDF
    The currently accepted interpretation of the clock and wavefront model of somitogenesis is that a posteriorly moving molecular gradient sequentially slows the rate of clock oscillations, resulting in a spatial readout of temporal oscillations. However, while molecular components of the clocks and wavefronts have now been identified in the pre-somitic mesoderm (PSM), there is not yet conclusive evidence demonstrating that the observed molecular wavefronts act to slow clock oscillations. Here we present an alternative formulation of the clock and wavefront model in which oscillator coupling, already known to play a key role in oscillator synchronisation, plays a fundamentally important role in the slowing of oscillations along the anterior–posterior (AP) axis. Our model has three parameters which can be determined, in any given species, by the measurement of three quantities: the clock period in the posterior PSM, somite length and the length of the PSM. A travelling wavefront, which slows oscillations along the AP axis, is an emergent feature of the model. Using the model we predict: (a) the distance between moving stripes of gene expression; (b) the number of moving stripes of gene expression and (c) the oscillator period profile along the AP axis. Predictions regarding the stripe data are verified using existing zebrafish data. We simulate a range of experimental perturbations and demonstrate how the model can be used to unambiguously define a reference frame along the AP axis. Comparing data from zebrafish, chick, mouse and snake, we demonstrate that: (a) variation in patterning profiles is accounted for by a single nondimensional parameter; the ratio of coupling strengths; and (b) the period profile along the AP axis is conserved across species. Thus the model is consistent with the idea that, although the genes involved in pattern propagation in the PSM vary, there is a conserved patterning mechanism across species

    Nodal degenerations of plane curves and Galois covers

    Full text link
    Globally irreducible nodes (i.e. nodes whose branches belong to the same irreducible component) have mild effects on the most common topological invariants of an algebraic curve. In other words, adding a globally irreducible node (simple nodal degeneration) to a curve should not change them a lot. In this paper we study the effect of nodal degeneration of curves on fundamental groups and show examples where simple nodal degenerations produce non-isomorphic fundamental groups and this can be detected in an algebraic way by means of Galois coverings.Comment: 16 pages, 3 figure

    Nuclear currents based on the integral form of the continuity equation

    Full text link
    We present an approach to obtain new forms of the nuclear electromagnetic current, which is based on an integral form of the continuity equation. The procedure can be used to restore current conservation in model calculations in which the continuity equation is not verified. Besides, it provides, as a particular result, the so-called Siegert's form of the nuclear current, first obtained by Friar and Fallieros by extending Siegert's theorem to arbitrary values of the momentum transfer. The new currents are explicitly conserved and permit a straightforward analysis of their behavior at both low and high momentum transfers. The results are illustrated with a simple nuclear model which includes a harmonic oscillator mean potential.Comment: 19 pages, revtex, plus 2 PS figure

    On surfaces with p_g=2, q=1 and K^2=5

    Full text link
    We consider minimal surfaces of general type with pg=2p_g = 2, q=1q = 1 and K2=5K^2 = 5. We provide a stratification of the corresponding moduli space and we give some bounds for the number and the dimensions of its irreducible components.Comment: 25 pages. To appear in Rendiconti del Circolo Matematico di Palerm
    corecore