927 research outputs found

    A Conservative Scheme with Optimal Error Estimates for a Multidimensional Space-Fractional Gross-Pitaevskii Equation

    Get PDF
    The present work departs from an extended form of the classical multi-dimensional Gross-Pitaevskii equation, which considers fractional derivatives of the Riesz type in space, a generalized potential function and angular momentum rotation. It is well known that the classical system possesses functionals which are preserved throughout time. It is easy to check that the generalized fractional model considered in this work also possesses conserved quantities, whence the development of conservative and efficient numerical schemes is pragmatically justified. Motivated by these facts, we propose a finite-difference method based on weighted-shifted Grünwald differences to approximate the solutions of the generalized Gross-Pitaevskii system. We provide here a discrete extension of the uniform Sobolev inequality to multiple dimensions, and show that the proposed method is capable of preserving discrete forms of the mass and the energy of the model. Moreover, we establish thoroughly the stability and the convergence of the technique, and provide some illustrative simulations to show that the method is capable of preserving the total mass and the total energy of the generalized system. © 2019 Ahmed S. Hendy et al., published by Sciendo 2019

    Effective slip boundary conditions for flows over nanoscale chemical heterogeneities

    Full text link
    We study slip boundary conditions for simple fluids at surfaces with nanoscale chemical heterogeneities. Using a perturbative approach, we examine the flow of a Newtonian fluid far from a surface described by a heterogeneous Navier slip boundary condition. In the far-field, we obtain expressions for an effective slip boundary condition in certain limiting cases. These expressions are compared to numerical solutions which show they work well when applied in the appropriate limits. The implications for experimental measurements and for the design of surfaces that exhibit large slip lengths are discussed.Comment: 14 pages, 3 figure

    Discrete monotone method for space-fractional nonlinear reaction–diffusion equations

    Get PDF
    A discrete monotone iterative method is reported here to solve a space-fractional nonlinear diffusion–reaction equation. More precisely, we propose a Crank–Nicolson discretization of a reaction–diffusion system with fractional spatial derivative of the Riesz type. The finite-difference scheme is based on the use of fractional-order centered differences, and it is solved using a monotone iterative technique. The existence and uniqueness of solutions of the numerical model are analyzed using this approach, along with the technique of upper and lower solutions. This methodology is employed also to prove the main numerical properties of the technique, namely, the consistency, stability, and convergence. As an application, the particular case of the space-fractional Fisher’s equation is theoretically analyzed in full detail. In that case, the monotone iterative method guarantees the preservation of the positivity and the boundedness of the numerical approximations. Various numerical examples are provided to illustrate the validity of the numerical approximations. More precisely, we provide an extensive series of comparisons against other numerical methods available in the literature, we show detailed numerical analyses of convergence in time and in space against fractional and integer-order models, and we provide studies on the robustness and the numerical performance of the discrete monotone method. © 2019, The Author(s).Russian Foundation for Basic Research, RFBR: 19-01-00019Consejo Nacional de Ciencia y Tecnología, CONACYT: A1-S-45928The first author would like to acknowledge the financial support of the National Council for Science and Technology of Mexico (CONACYT). The second (and corresponding) author acknowledges financial support from CONACYT through grant A1-S-45928. ASH is financed by RFBR Grant 19-01-00019

    Effect of Patterned Slip on Micro and Nanofluidic Flows

    Full text link
    We consider the flow of a Newtonian fluid in a nano or microchannel with walls that have patterned variations in slip length. We formulate a set of equations to describe the effects on an incompressible Newtonian flow of small variations in slip, and solve these equations for slow flows. We test these equations using molecular dynamics simulations of flow between two walls which have patterned variations in wettability. Good qualitative agreement and a reasonable degree of quantitative agreement is found between the theory and the molecular dynamics simulations. The results of both analyses show that patterned wettability can be used to induce complex variations in flow. Finally we discuss the implications of our results for the design of microfluidic mixers using slip.Comment: 13 pages, 12 figures, final version for publicatio

    99 Bisnis Anak Muda

    Get PDF
    Masa muda masa berkarya, bekreasi dan penuh ide kreatif. Pemabahsan buku ini meliputi kelebihan, kekurangan, peluang, dan ancaman yang terkait dengan masing0masing bisnis. Termasuk perhitungan bisnis dan perkiraan modal kembali. Secara garis besar buku ini berisi : Bab 1 yang muda yang mandiri Bab 2 persiapan bisnis gaya anak muda Bab 3 tips dan trik buat anak muda yang berbisnis Bab 4 peluang bisnis anak muda Bab 5 kisah sukses usaha anak mud

    Superheating and solid-liquid phase coexistence in nanoparticles with non-melting surfaces

    Full text link
    We present a phenomenological model of melting in nanoparticles with facets that are only partially wet by their liquid phase. We show that in this model, as the solid nanoparticle seeks to avoid coexistence with the liquid, the microcanonical melting temperature can exceed the bulk melting point, and that the onset of coexistence is a first-order transition. We show that these results are consistent with molecular dynamics simulations of aluminum nanoparticles which remain solid above the bulk melting temperature.Comment: 8 pages, 5 figure

    A discrete Grönwall inequality and energy estimates in the analysis of a discrete model for a nonlinear time-fractional heat equation

    Full text link
    In the present work, we investigate the efficiency of a numerical scheme to solve a nonlinear time-fractional heat equation with sufficiently smooth solutions, which was previously reported in the literature [Fract. Calc. Appl. Anal. 16: 892-910 (2013)]. In that article, the authors established the stability and consistency of the discrete model using arguments from Fourier analysis. As opposed to that work, in the present work, we use the method of energy inequalities to show that the scheme is stable and converges to the exact solution with order O(τ2-α + h4), in the case that 0 < α < 1 satisfies 3α ≥ 3/2, which means that 0.369 α ≤ 1. The novelty of the present work lies in the derivation of suitable energy estimates, and a discrete fractional Grönwall inequality, which is consistent with the discrete approximation of the Caputo fractional derivative of order 0 < α < 1 used for that scheme at tk+1/2. © 2020 by the authors.The first author wishes to acknowledge the support of RFBR Grant 19-01-00019. Meanwhile, the second author would like to acknowledge the financial support of the National Council for Science and Technology of Mexico (CONACYT). The second author acknowledges financial support from CONACYT through grant A1-S-45928. Acknowledgments: The authors wish to thank the guest editors for their kind invitation to submit a paper to the special issue of Mathematics MDPI on "Computational Mathematics and Neural Systems". They also wish to thank the anonymous reviewers for their comments and criticisms. All of their comments were taken into account in the revised version of the paper, resulting in a substantial improvement with respect to the original submission
    corecore