1,306 research outputs found
Roughness induced boundary slip in microchannel flows
Surface roughness becomes relevant if typical length scales of the system are
comparable to the scale of the variations as it is the case in microfluidic
setups. Here, an apparent boundary slip is often detected which can have its
origin in the assumption of perfectly smooth boundaries. We investigate the
problem by means of lattice Boltzmann (LB) simulations and introduce an
``effective no-slip plane'' at an intermediate position between peaks and
valleys of the surface. Our simulations show good agreement with analytical
results for sinusoidal boundaries, but can be extended to arbitrary geometries
and experimentally obtained surface data. We find that the detected apparent
slip is independent of the detailed boundary shape, but only given by the
distribution of surface heights. Further, we show that the slip diverges as the
amplitude of the roughness increases.Comment: 4 pages, 6 figure
Random-roughness hydrodynamic boundary conditions
We report results of lattice Boltzmann simulations of a high-speed drainage
of liquid films squeezed between a smooth sphere and a randomly rough plane. A
significant decrease in the hydrodynamic resistance force as compared with that
predicted for two smooth surfaces is observed. However, this force reduction
does not represent slippage. The computed force is exactly the same as that
between equivalent smooth surfaces obeying no-slip boundary conditions, but
located at an intermediate position between peaks and valleys of asperities.
The shift in hydrodynamic thickness is shown to depend on the height and
density of roughness elements. Our results do not support some previous
experimental conclusions on very large and shear-dependent boundary slip for
similar systems.Comment: 4 pages, 4 figure
Slip flow over structured surfaces with entrapped microbubbles
On hydrophobic surfaces, roughness may lead to a transition to a
superhydrophobic state, where gas bubbles at the surface can have a strong
impact on a detected slip. We present two-phase lattice Boltzmann simulations
of a Couette flow over structured surfaces with attached gas bubbles. Even
though the bubbles add slippery surfaces to the channel, they can cause
negative slip to appear due to the increased roughness. The simulation method
used allows the bubbles to deform due to viscous stresses. We find a decrease
of the detected slip with increasing shear rate which is in contrast to some
recent experimental results implicating that bubble deformation cannot account
for these experiments. Possible applications of bubble surfaces in microfluidic
devices are discussed.Comment: 4 pages, 4 figures. v2: revised version, to appear in Phys. Rev. Let
Recent advances in the simulation of particle-laden flows
A substantial number of algorithms exists for the simulation of moving
particles suspended in fluids. However, finding the best method to address a
particular physical problem is often highly non-trivial and depends on the
properties of the particles and the involved fluid(s) together. In this report
we provide a short overview on a number of existing simulation methods and
provide two state of the art examples in more detail. In both cases, the
particles are described using a Discrete Element Method (DEM). The DEM solver
is usually coupled to a fluid-solver, which can be classified as grid-based or
mesh-free (one example for each is given). Fluid solvers feature different
resolutions relative to the particle size and separation. First, a
multicomponent lattice Boltzmann algorithm (mesh-based and with rather fine
resolution) is presented to study the behavior of particle stabilized fluid
interfaces and second, a Smoothed Particle Hydrodynamics implementation
(mesh-free, meso-scale resolution, similar to the particle size) is introduced
to highlight a new player in the field, which is expected to be particularly
suited for flows including free surfaces.Comment: 16 pages, 4 figure
Penning traps with unitary architecture for storage of highly charged ions
Penning traps are made extremely compact by embedding rare-earth permanent
magnets in the electrode structure. Axially-oriented NdFeB magnets are used in
unitary architectures that couple the electric and magnetic components into an
integrated structure. We have constructed a two- magnet Penning trap with
radial access to enable the use of laser or atomic beams, as well as the
collection of light. An experimental apparatus equipped with ion optics is
installed at the NIST electron beam ion trap (EBIT) facility, constrained to
fit within 1 meter at the end of a horizontal beamline for transporting highly
charged ions. Highly charged ions of neon and argon, extracted with initial
energies up to 4000 eV per unit charge, are captured and stored to study the
confinement properties of a one-magnet trap and a two-magnet trap. Design
considerations and some test results are discussed
Understanding the impact of area-based interventions on area safety in deprived areas: realist evaluation of a neighbour nuisance intervention in Arnhem, the Netherlands
Background: Area-based health inequalities may partly be explained by higher levels of area disorder in deprived areas. Area disorder may cause safety concerns and hence impair health. This study assessed how, for whom and in what conditions the intervention Meeting for Care and Nuisance (MCN) had an impact on neighbour nuisance and area safety in four deprived districts in Arnhem, the Netherlands.Methods: Realist evaluation methodology was applied to uncover how, for whom, and under what conditions MCN was expected to and actually produced change. Expected change was based on action plans and scientific theories. Actual change was based on progress reports, media articles, interviews with district managers, and quantitative surveys.Results: Three levels of impact were distinguished. At the organisational level, partly as expected, MCN’s coordinated partnership strategy enabled role alignment, communication, and leadership. This resulted in a more efficient approach of nuisance households. At the level of nuisance households, as expected, MCN’s joint assistance and enforcement strategy removed many of the underlying reasons for nuisance. This resulted in less neighbour nuisance. At the district level, perceptions of social control and area safety improved only in one district. Key conditions for change included a wider safety approach, dense population, and central location of the district within the city.Conclusions: This realist evaluation provided insight into the mechanisms by which a complex area-based intervention was able to reduce neighbour nuisance in deprived areas. Depending on wider conditions, such a reduction in neighbour nuisance may or may not lead to improved perceptions of area safety at the district level
Simulations of slip flow on nanobubble-laden surfaces
On microstructured hydrophobic surfaces, geometrical patterns may lead to the
appearance of a superhydrophobic state, where gas bubbles at the surface can
have a strong impact on the fluid flow along such surfaces. In particular, they
can strongly influence a detected slip at the surface. We present two-phase
lattice Boltzmann simulations of a flow over structured surfaces with attached
gas bubbles and demonstrate how the detected slip depends on the pattern
geometry, the bulk pressure, or the shear rate. Since a large slip leads to
reduced friction, our results allow to assist in the optimization of
microchannel flows for large throughput.Comment: 22 pages, 12 figure
Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann
On-site boundary conditions are often desired for lattice Boltzmann
simulations of fluid flow in complex geometries such as porous media or
microfluidic devices. The possibility to specify the exact position of the
boundary, independent of other simulation parameters, simplifies the analysis
of the system. For practical applications it should allow to freely specify the
direction of the flux, and it should be straight forward to implement in three
dimensions. Furthermore, especially for parallelized solvers it is of great
advantage if the boundary condition can be applied locally, involving only
information available on the current lattice site. We meet this need by
describing in detail how to transfer the approach suggested by Zou and He to a
D3Q19 lattice. The boundary condition acts locally, is independent of the
details of the relaxation process during collision and contains no artificial
slip. In particular, the case of an on-site no-slip boundary condition is
naturally included. We test the boundary condition in several setups and
confirm that it is capable to accurately model the velocity field up to second
order and does not contain any numerical slip.Comment: 13 pages, 4 figures, revised versio
Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels
Various experiments have found a boundary slip in hydrophobic microchannel
flows, but a consistent understanding of the results is still lacking. While
Molecular Dynamics (MD) simulations cannot reach the low shear rates and large
system sizes of the experiments, it is often impossible to resolve the needed
details with macroscopic approaches. We model the interaction between
hydrophobic channel walls and a fluid by means of a multi-phase lattice
Boltzmann model. Our mesoscopic approach overcomes the limitations of MD
simulations and can reach the small flow velocities of known experiments. We
reproduce results from experiments at small Knudsen numbers and other
simulations, namely an increase of slip with increasing liquid-solid
interactions, the slip being independent of the flow velocity, and a decreasing
slip with increasing bulk pressure. Within our model we develop a semi-analytic
approximation of the dependence of the slip on the pressure.Comment: 7 pages, 4 figure
A Stability Diagram for Dense Suspensions of Model Colloidal Al2O3-Particles in Shear Flow
In Al2O3 suspensions, depending on the experimental conditions very different
microstructures can be found, comprising fluid like suspensions, a repulsive
structure, and a clustered microstructure. For technical processing in
ceramics, the knowledge of the microstructure is of importance, since it
essentially determines the stability of a workpiece to be produced. To
enlighten this topic, we investigate these suspensions under shear by means of
simulations. We observe cluster formation on two different length scales: the
distance of nearest neighbors and on the length scale of the system size. We
find that the clustering behavior does not depend on the length scale of
observation. If inter-particle interactions are not attractive the particles
form layers in the shear flow. The results are summarized in a stability
diagram.Comment: 15 pages, 10 figures, revised versio
- …