1,306 research outputs found

    Roughness induced boundary slip in microchannel flows

    Get PDF
    Surface roughness becomes relevant if typical length scales of the system are comparable to the scale of the variations as it is the case in microfluidic setups. Here, an apparent boundary slip is often detected which can have its origin in the assumption of perfectly smooth boundaries. We investigate the problem by means of lattice Boltzmann (LB) simulations and introduce an ``effective no-slip plane'' at an intermediate position between peaks and valleys of the surface. Our simulations show good agreement with analytical results for sinusoidal boundaries, but can be extended to arbitrary geometries and experimentally obtained surface data. We find that the detected apparent slip is independent of the detailed boundary shape, but only given by the distribution of surface heights. Further, we show that the slip diverges as the amplitude of the roughness increases.Comment: 4 pages, 6 figure

    Random-roughness hydrodynamic boundary conditions

    Get PDF
    We report results of lattice Boltzmann simulations of a high-speed drainage of liquid films squeezed between a smooth sphere and a randomly rough plane. A significant decrease in the hydrodynamic resistance force as compared with that predicted for two smooth surfaces is observed. However, this force reduction does not represent slippage. The computed force is exactly the same as that between equivalent smooth surfaces obeying no-slip boundary conditions, but located at an intermediate position between peaks and valleys of asperities. The shift in hydrodynamic thickness is shown to depend on the height and density of roughness elements. Our results do not support some previous experimental conclusions on very large and shear-dependent boundary slip for similar systems.Comment: 4 pages, 4 figure

    Slip flow over structured surfaces with entrapped microbubbles

    Get PDF
    On hydrophobic surfaces, roughness may lead to a transition to a superhydrophobic state, where gas bubbles at the surface can have a strong impact on a detected slip. We present two-phase lattice Boltzmann simulations of a Couette flow over structured surfaces with attached gas bubbles. Even though the bubbles add slippery surfaces to the channel, they can cause negative slip to appear due to the increased roughness. The simulation method used allows the bubbles to deform due to viscous stresses. We find a decrease of the detected slip with increasing shear rate which is in contrast to some recent experimental results implicating that bubble deformation cannot account for these experiments. Possible applications of bubble surfaces in microfluidic devices are discussed.Comment: 4 pages, 4 figures. v2: revised version, to appear in Phys. Rev. Let

    Recent advances in the simulation of particle-laden flows

    Get PDF
    A substantial number of algorithms exists for the simulation of moving particles suspended in fluids. However, finding the best method to address a particular physical problem is often highly non-trivial and depends on the properties of the particles and the involved fluid(s) together. In this report we provide a short overview on a number of existing simulation methods and provide two state of the art examples in more detail. In both cases, the particles are described using a Discrete Element Method (DEM). The DEM solver is usually coupled to a fluid-solver, which can be classified as grid-based or mesh-free (one example for each is given). Fluid solvers feature different resolutions relative to the particle size and separation. First, a multicomponent lattice Boltzmann algorithm (mesh-based and with rather fine resolution) is presented to study the behavior of particle stabilized fluid interfaces and second, a Smoothed Particle Hydrodynamics implementation (mesh-free, meso-scale resolution, similar to the particle size) is introduced to highlight a new player in the field, which is expected to be particularly suited for flows including free surfaces.Comment: 16 pages, 4 figure

    Penning traps with unitary architecture for storage of highly charged ions

    Full text link
    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two- magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed

    Understanding the impact of area-based interventions on area safety in deprived areas: realist evaluation of a neighbour nuisance intervention in Arnhem, the Netherlands

    Get PDF
    Background: Area-based health inequalities may partly be explained by higher levels of area disorder in deprived areas. Area disorder may cause safety concerns and hence impair health. This study assessed how, for whom and in what conditions the intervention Meeting for Care and Nuisance (MCN) had an impact on neighbour nuisance and area safety in four deprived districts in Arnhem, the Netherlands.Methods: Realist evaluation methodology was applied to uncover how, for whom, and under what conditions MCN was expected to and actually produced change. Expected change was based on action plans and scientific theories. Actual change was based on progress reports, media articles, interviews with district managers, and quantitative surveys.Results: Three levels of impact were distinguished. At the organisational level, partly as expected, MCN’s coordinated partnership strategy enabled role alignment, communication, and leadership. This resulted in a more efficient approach of nuisance households. At the level of nuisance households, as expected, MCN’s joint assistance and enforcement strategy removed many of the underlying reasons for nuisance. This resulted in less neighbour nuisance. At the district level, perceptions of social control and area safety improved only in one district. Key conditions for change included a wider safety approach, dense population, and central location of the district within the city.Conclusions: This realist evaluation provided insight into the mechanisms by which a complex area-based intervention was able to reduce neighbour nuisance in deprived areas. Depending on wider conditions, such a reduction in neighbour nuisance may or may not lead to improved perceptions of area safety at the district level

    Simulations of slip flow on nanobubble-laden surfaces

    Get PDF
    On microstructured hydrophobic surfaces, geometrical patterns may lead to the appearance of a superhydrophobic state, where gas bubbles at the surface can have a strong impact on the fluid flow along such surfaces. In particular, they can strongly influence a detected slip at the surface. We present two-phase lattice Boltzmann simulations of a flow over structured surfaces with attached gas bubbles and demonstrate how the detected slip depends on the pattern geometry, the bulk pressure, or the shear rate. Since a large slip leads to reduced friction, our results allow to assist in the optimization of microchannel flows for large throughput.Comment: 22 pages, 12 figure

    Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann

    Full text link
    On-site boundary conditions are often desired for lattice Boltzmann simulations of fluid flow in complex geometries such as porous media or microfluidic devices. The possibility to specify the exact position of the boundary, independent of other simulation parameters, simplifies the analysis of the system. For practical applications it should allow to freely specify the direction of the flux, and it should be straight forward to implement in three dimensions. Furthermore, especially for parallelized solvers it is of great advantage if the boundary condition can be applied locally, involving only information available on the current lattice site. We meet this need by describing in detail how to transfer the approach suggested by Zou and He to a D3Q19 lattice. The boundary condition acts locally, is independent of the details of the relaxation process during collision and contains no artificial slip. In particular, the case of an on-site no-slip boundary condition is naturally included. We test the boundary condition in several setups and confirm that it is capable to accurately model the velocity field up to second order and does not contain any numerical slip.Comment: 13 pages, 4 figures, revised versio

    Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels

    Full text link
    Various experiments have found a boundary slip in hydrophobic microchannel flows, but a consistent understanding of the results is still lacking. While Molecular Dynamics (MD) simulations cannot reach the low shear rates and large system sizes of the experiments, it is often impossible to resolve the needed details with macroscopic approaches. We model the interaction between hydrophobic channel walls and a fluid by means of a multi-phase lattice Boltzmann model. Our mesoscopic approach overcomes the limitations of MD simulations and can reach the small flow velocities of known experiments. We reproduce results from experiments at small Knudsen numbers and other simulations, namely an increase of slip with increasing liquid-solid interactions, the slip being independent of the flow velocity, and a decreasing slip with increasing bulk pressure. Within our model we develop a semi-analytic approximation of the dependence of the slip on the pressure.Comment: 7 pages, 4 figure

    A Stability Diagram for Dense Suspensions of Model Colloidal Al2O3-Particles in Shear Flow

    Get PDF
    In Al2O3 suspensions, depending on the experimental conditions very different microstructures can be found, comprising fluid like suspensions, a repulsive structure, and a clustered microstructure. For technical processing in ceramics, the knowledge of the microstructure is of importance, since it essentially determines the stability of a workpiece to be produced. To enlighten this topic, we investigate these suspensions under shear by means of simulations. We observe cluster formation on two different length scales: the distance of nearest neighbors and on the length scale of the system size. We find that the clustering behavior does not depend on the length scale of observation. If inter-particle interactions are not attractive the particles form layers in the shear flow. The results are summarized in a stability diagram.Comment: 15 pages, 10 figures, revised versio
    • …
    corecore