408 research outputs found

    Electron interaction in matter

    Get PDF
    Data on the scattering of 1-MeV electrons in aluminum for the case of non-normal incidence, electron-bremsstrahlung cross-sections in thin targets, and the production of bremstrahlung by electron interaction in thick targets, are presented both in tabular and graphic form. These results may interest physicists and radiologists

    Investigation of electron interaction in matter Final report, 9 Feb. 1967 - 9 Feb. 1968

    Get PDF
    Electron interaction in matter - electron scattering, electron-bremsstrahlung cross sections and electron bremsstrahlung production in targets at various incident energie

    Characteristic slepton signal in anomaly mediated SUSY breaking models via gauge boson fusion at the LHC

    Get PDF
    We point out that slepton pairs produced via gauge boson fusion in anomaly mediated supersymmetry breaking (AMSB) model have very characteristic and almost clean signal at the Large Hadron Collider. In this article, we discuss how one lepton associated with missing energy and produced in between two high-pTp_T and high-mass forward jets can explore quite heavy sleptons in this scenario.Comment: Version to appear in Physical Review

    Increased Yield of ttbb at Hadron Colliders in Low-Energy Supersymmetry

    Get PDF
    Light bottom squarks and gluinos have been invoked to explain the b quark pair production excess at the Tevatron. We investigate the associated production of ttbb at hadron colliders in this scenario, and find that the rates for this process are enhanced over the Standard Model prediction. If light gluinos exist, it may be possible to detect them at the Tevatron, and they could easily be observed at the LHC.Comment: 5p, references added, version accepted to PR

    Finite-Width Effects in Top Quark Production at Hadron Colliders

    Get PDF
    Production cross sections for t\bar{t} and t\bar{t}j events at hadron colliders are calculated, including finite width effects and off resonance contributions for the entire decay chain, t --> bW --> b\ell\nu, for both top quarks. Resulting background rates to Higgs search at the CERN LHC are updated for inclusive H --> WW studies and for H --> \tau\tau and H --> WW decays in weak boson fusion events. Finite width effects are large, increasing t\bar{t}(j) rates by 20% or more, after typical cuts which are employed for top-background rejection.Comment: 32 pages, 11 figures, 7 tables; minor changes, reference added, to be published in Phys. Rev.

    Higgs and SUSY searches at future colliders

    Get PDF
    In this talk, I discuss some aspects of Higgs searches at future colliders, particularly comparing and contrasting the capabilities of LHC and Next Linear Collider (NLC), including the aspects of Higgs searches in supersymmetric theories. After this, I will discuss how the search and study of sparticles other than the Higgs can give information about the parameters of the Minimal Supersymmetric Standard Model (MSSM).Comment: 20 pages, 12 figures, laTeX, requires pramana.sty,ias.sty added. In the Proceedings of XII DAE symposium, Chandigarh, December 199

    Plasmonic Cloaking of Cylinders: Finite Length, Oblique Illumination and Cross-Polarization Coupling

    Full text link
    Metamaterial cloaking has been proposed and studied in recent years following several interesting approaches. One of them, the scattering-cancellation technique, or plasmonic cloaking, exploits the plasmonic effects of suitably designed thin homogeneous metamaterial covers to drastically suppress the scattering of moderately sized objects within specific frequency ranges of interest. Besides its inherent simplicity, this technique also holds the promise of isotropic response and weak polarization dependence. Its theory has been applied extensively to symmetrical geometries and canonical 3D shapes, but its application to elongated objects has not been explored with the same level of detail. We derive here closed-form theoretical formulas for infinite cylinders under arbitrary wave incidence, and validate their performance with full-wave numerical simulations, also considering the effects of finite lengths and truncation effects in cylindrical objects. In particular, we find that a single isotropic (idealized) cloaking layer may successfully suppress the dominant scattering coefficients of moderately thin elongated objects, even for finite lengths comparable with the incident wavelength, providing a weak dependence on the incidence angle. These results may pave the way for application of plasmonic cloaking in a variety of practical scenarios of interest.Comment: 17 pages, 11 figures, 2 table

    QCD corrections to electroweak l nu_l jj and l^+ l^- jj production

    Full text link
    The production of W or Z bosons in association with two jets is an important background to the Higgs boson search in vector-boson fusion at the LHC. The purely electroweak component of this background is dominated by vector-boson fusion, which exhibits kinematic distributions very similar to the Higgs boson signal. We consider the next-to-leading order QCD corrections to the electroweak production of l nu_l jj and l^+ l^- jj events at the LHC, within typical vector-boson fusion cuts. We show that the QCD corrections are modest, increasing the total cross sections by about 10%. Remaining scale uncertainties are below 2%. A fully-flexible next-to-leading order partonic Monte Carlo program allows to demonstrate these features for cross sections within typical vector-boson-fusion acceptance cuts. Modest corrections are also found for distributions.Comment: 26 pages, 10 figures. PRD final version. One reference corrected, introduction expande

    Measuring Higgs boson couplings at the LHC

    Get PDF
    For an intermediate mass Higgs boson with SM-like couplings the LHC allows observation of a variety of decay channels in production by gluon fusion and weak boson fusion. Cross section ratios provide measurements of various ratios of Higgs couplings, with accuracies of order 15% for 100 fb^{-1} of data in each of the two LHC experiments. For Higgs masses above 120 GeV, minimal assumptions on the Higgs sector allow for an indirect measurement of the total Higgs boson width with an accuracy of 10 to 20%, and of the H-->WW partial width with an accuracy of about 10%.Comment: 25 pages, Revtex, 1 figur
    corecore