11,575 research outputs found
An Intuitionistic Formula Hierarchy Based on High-School Identities
We revisit the notion of intuitionistic equivalence and formal proof
representations by adopting the view of formulas as exponential polynomials.
After observing that most of the invertible proof rules of intuitionistic
(minimal) propositional sequent calculi are formula (i.e. sequent) isomorphisms
corresponding to the high-school identities, we show that one can obtain a more
compact variant of a proof system, consisting of non-invertible proof rules
only, and where the invertible proof rules have been replaced by a formula
normalisation procedure.
Moreover, for certain proof systems such as the G4ip sequent calculus of
Vorob'ev, Hudelmaier, and Dyckhoff, it is even possible to see all of the
non-invertible proof rules as strict inequalities between exponential
polynomials; a careful combinatorial treatment is given in order to establish
this fact.
Finally, we extend the exponential polynomial analogy to the first-order
quantifiers, showing that it gives rise to an intuitionistic hierarchy of
formulas, resembling the classical arithmetical hierarchy, and the first one
that classifies formulas while preserving isomorphism
Pomeron loops in zero transverse dimensions
We analyze a toy model which has a structure similar to that of the recently
found QCD evolution equations, but without transverse dimensions. We develop
two different but equivalent methods in order to compute the leading-order and
next-to-leading order Pomeron loop diagrams. In addition to the leading-order
result which has been derived from Mueller's toy model~\cite% {Mueller:1994gb},
we can also calculate the next-to-leading order contribution which provides the
correction. We interpret this result and discuss its
possible implications for the four-dimensional QCD evolution.Comment: 11 pages, 4 figure
Average and worst-case specifications of precipitating auroral electron environment
The precipitation electrons in the auroral environment are highly variable in their energy and intensity in both space and time. As such they are a source of potential hazard to the operation of the Space Shuttle and other large spacecraft operating in polar orbit. In order to assess these hazards both the average and extreme states of the precipitating electrons must be determined. Work aimed at such a specification is presented. First results of a global study of the average characteristics are presented. In this study the high latitude region was divided into spatial elements in magnetic local time and corrected geomagnetic latitude. The average electron spectrum was then determined in each spatial element for seven different levels of activity as measured by K sub p using an extremely large data set of auroral observations. Second a case study of an extreme auroral electron environment is presented, in which the electrons are accelerated through field aligned potential as high as 30,000 volts and in which the spacecraft is seen to charge negatively to a potential approaching .5 kilovolts
Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection
We consider the problem of distinguishing, with minimum probability of error,
two optical beam-splitter channels with unequal complex-valued reflectivities
using general quantum probe states entangled over M signal and M' idler mode
pairs of which the signal modes are bounced off the beam splitter while the
idler modes are retained losslessly. We obtain a lower bound on the output
state fidelity valid for any pure input state. We define number-diagonal signal
(NDS) states to be input states whose density operator in the signal modes is
diagonal in the multimode number basis. For such input states, we derive series
formulas for the optimal error probability, the output state fidelity, and the
Chernoff-type upper bounds on the error probability. For the special cases of
quantum reading of a classical digital memory and target detection (for which
the reflectivities are real valued), we show that for a given input signal
photon probability distribution, the fidelity is minimized by the NDS states
with that distribution and that for a given average total signal energy N_s,
the fidelity is minimized by any multimode Fock state with N_s total signal
photons. For reading of an ideal memory, it is shown that Fock state inputs
minimize the Chernoff bound. For target detection under high-loss conditions, a
no-go result showing the lack of appreciable quantum advantage over coherent
state transmitters is derived. A comparison of the error probability
performance for quantum reading of number state and two-mode squeezed vacuum
state (or EPR state) transmitters relative to coherent state transmitters is
presented for various values of the reflectances. While the nonclassical states
in general perform better than the coherent state, the quantitative performance
gains differ depending on the values of the reflectances.Comment: 12 pages, 7 figures. This closely approximates the published version.
The major change from v2 is that Section IV has been re-organized, with a
no-go result for target detection under high loss conditions highlighted. The
last sentence of the abstract has been deleted to conform to the arXiv word
limit. Please see the PDF for the full abstrac
Simulation evaluation of a low-altitude helicopter flight guidance system adapted for a helmet-mounted display
A computer aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generation algorithm based upon dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. The pilot evaluation was conducted at NASA ARC moving base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, the Air Force, and the helicopter industry. The pilots manually tracked the trajectory generated by the algorithm utilizing the HMD symbology. The pilots were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world
Relative entropy of entanglement for certain multipartite mixed states
We prove conjectures on the relative entropy of entanglement (REE) for two
families of multipartite qubit states. Thus, analytic expressions of REE for
these families of states can be given. The first family of states are composed
of mixture of some permutation-invariant multi-qubit states. The results
generalized to multi-qudit states are also shown to hold. The second family of
states contain D\"ur's bound entangled states. Along the way, we have discussed
the relation of REE to two other measures: robustness of entanglement and
geometric measure of entanglement, slightly extending previous results.Comment: Single column, 22 pages, 9 figures, comments welcom
Архитектура системы ситуационного управления
This article related to situation management. It contains architecture of situation management system and class diagram of situation management agent
The twisted fourth moment of the Riemann zeta function
We compute the asymptotics of the fourth moment of the Riemann zeta function
times an arbitrary Dirichlet polynomial of length Comment: 28 pages. v2: added reference
On the number of representations providing noiseless subsystems
This paper studies the combinatoric structure of the set of all
representations, up to equivalence, of a finite-dimensional semisimple Lie
algebra. This has intrinsic interest as a previously unsolved problem in
representation theory, and also has applications to the understanding of
quantum decoherence. We prove that for Hilbert spaces of sufficiently high
dimension, decoherence-free subspaces exist for almost all representations of
the error algebra. For decoherence-free subsystems, we plot the function
which is the fraction of all -dimensional quantum systems which
preserve bits of information through DF subsystems, and note that this
function fits an inverse beta distribution. The mathematical tools which arise
include techniques from classical number theory.Comment: 17 pp, 4 figs, accepted for Physical Review
- …