430 research outputs found

    Induced Kramer-Pesch-Effect in a Two Gap Superconductor: Application to MgB2

    Full text link
    The size of the vortex core in a clean superconductor is strongly temperature dependent and shrinks with decreasing temperature, decreasing to zero for T -> 0. We study this so-called Kramer-Pesch effect both for a single gap superconductor and for the case of a two gap superconductor using parameters appropriate for Magnesium Diboride. Usually, the Kramer-Pesch effect is absent in the dirty limit. Here, we show that the Kramer-Pesch effect exists in both bands of a two gap superconductor even if only one of the two bands is in the clean limit and the other band in the dirty limit, a case appropriate for MgB2. In this case an induced Kramer-Pesch effect appears in the dirty band. Besides numerical results we also present an analytical model for the spatial variation of the pairing potential in the vicinity of the vortex center that allows a simple calculation of the vortex core radius even in the limit T -> 0.Comment: 12 pages, 12 figure

    Proximity fingerprint of s+- superconductivity

    Full text link
    We suggest a straightforward and unambiguous test to identify possible opposite signs of superconducting order parameter in different bands proposed for iron-based superconductors (s+- state). We consider proximity effect in a weakly coupled sandwich composed of a s+- superconductor and thin layer of s-wave superconductor. In such system the s-wave order parameter is coupled differently with different s+- gaps and it typically aligns with one of these gaps. This forces the other s+- gap to be anti-aligned with the s-wave gap. In such situation the aligned band induces a peak in the s-wave density of states (DoS), while the anti-aligned band induces a dip. Observation of such contact-induced negative feature in the s-wave DoS would provide a definite proof for s+- superconductivity.Comment: 4 pages, one figur

    Dust emission of Comet Halley at large heliocentric distances

    Get PDF
    Comet Halley is currently approaching the inner solar system. Four spacecrafts (NASA's spacecraft, two Russian Vega probes and the Japanese MS-T5 spacecraft) have already been launched to encounter the comet in March 1986. Two additional Halley probes (the European Giotto spacecraft and another Japanese Planet-A probe) will be launched in mid-85 to join the armada. Observations of dust emissions from Halley's Comet are discussed. The evaporation of cometary ices causes the emission of particulates from the nucleus. These observations will be used to determine the fly-by strategy of the Giotto spacecraft by taking into account the distribution of dust in the vicinity of the nucleus and the associated hazard for the space mission

    Novel surgical technique for complete traumatic rupture of the pancreas: A case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Complete pancreatic rupture is a rare injury. The typical mechanism by which this occurs is overstretching of the pancreas across the vertebral column during blunt abdominal trauma. The management of this injury depends on the location and extent of the injury.</p> <p>Case presentation</p> <p>A 45-year-old Caucasian woman presented with blunt abdominal trauma after she fell onto the end of a handlebar during a bicycle accident. She arrived in the emergency room with stable vital signs and an isolated bruise just above the umbilicus. A computed tomography scan revealed a complete rupture of the pancreas, just ventral to her superior mesenteric vein, and an accompanying hematoma but no additional injuries. An emergency laparotomy was performed; the head of the pancreas was oversewn with interrupted sutures and this was followed by a two-layer pancreaticojejunostomy with the tail of the pancreas. The recovery after surgery was completely uneventful.</p> <p>Conclusions</p> <p>Isolated complete pancreatic rupture is a rare injury that can be managed with complete organ preservation. The combination of suturing the pancreatic head and two-layer pancreaticojejunostomy with the pancreatic tail is a feasible technique to manage this condition.</p

    Single vortex structure in two models of iron pnictide s±s^\pm superconductivity

    Full text link
    The structure of a single vortex in a FeAs superconductor is studied in the framework of two formulations of superconductivity for the recently proposed sign-reversed ss wave (s±s^\pm) scenario: {\it (i)} a continuum model taking into account the existence of an electron and a hole band with a repulsive local interaction between the two; {\it (ii)} a lattice tight-binding model with two orbitals per unit cell and a next-nearest-neighbour attractive interaction. In the first model, the local density of states (LDOS) at the vortex centre, as a function of energy, exhibits a peak at the Fermi level, while in the second model such LDOS peak is deviated from the Fermi level and its energy depends on band filling. An impurity located outside the vortex core has little effect on the LDOS peak, but an impurity close to the vortex core can almost suppress it and modify its position.Comment: 17 pages, 15 figures. Accepted for publication in New Journal of Physic

    Determining gap nodal structures in Fe-based superconductors: angle-dependence of the low temperature specific heat in an applied magnetic field

    Full text link
    Since the discovery of high-Tc LaO_1-xF_xFeAs, and other such systems based on FeAs layers, several proposals have been made for the superconducting order parameter Delta_k, on both phenomenological and microscopic grounds. Here we discuss how the symmetry of Delta_k in the bulk can be determined, assuming that single crystals will soon be available. We suggest that a measurement of the dependence of the low temperature specific heat on the angle of a magnetic field in the FeAs plane is the simplest such method, and calculate representative specific heat vs. field angle oscillations for the various candidate states, using a phenomenological band structure fitted to the DFT Fermi surface.Comment: 5 pages, 4 figure

    A Twisted Ladder: relating the Fe superconductors to the high TcT_c cuprates

    Full text link
    We construct a 2-leg ladder model of an Fe-pnictide superconductor and discuss its properties and relationship with the familiar 2-leg cuprate model. Our results suggest that the underlying pairing mechanism for the Fe-pnictide superconductors is similar to that for the cuprates.Comment: 5 pages, 4 figure

    Specifics of impurity effects in ferropnictide superconductors

    Full text link
    Effects of impurities and disorder on quasiparticle spectrum in superconducting iron pnictides are considered. Possibility for occurrence of localized energy levels due to impurities within the superconducting gap and the related modification of band structure and of superconducting order parameter are discussed. The evolution of superconducting state with impurity doping is traced.Comment: 9 pages, 8 figure

    Point-Contact Spectroscopy in MgB_2: from Fundamental Physics to Thin-Film Characterization

    Full text link
    In this paper we highlight the advantages of using point-contact spectroscopy (PCS) in multigap superconductors like MgB_2, both as a fundamental research tool and as a non-destructive diagnostic technique for the optimization of thin-film characteristics. We first present some results of crucial fundamental interest obtained by directional PCS in MgB_2 single crystals, for example the temperature dependence of the gaps and of the critical fields and the effect of a magnetic field on the gap amplitudes. Then, we show how PCS can provide useful information about the surface properties of MgB_2 thin films (e.g. Tc, gap amplitude(s), clean or dirty-limit conditions) in view of their optimization for the fabrication of tunnel and Josephson junctions for applications in superconducting electronics.Comment: 11 pages, 7 figures; Proceedings of 6th EUCAS Conference (14-18 September 2003, Sorrento - Italy

    Superconductivity at the Border of Electron Localization and Itinerancy

    Full text link
    The superconducting state of iron pnictides and chalcogenides exists at the border of antiferromagnetic order. Consequently, these materials could provide clues about the relationship between magnetism and unconventional superconductivity. One explanation, motivated by the so-called bad-metal behaviour of these materials, proposes that magnetism and superconductivity develop out of quasi-localized magnetic moments which are generated by strong electron-electron correlations. Another suggests that these phenomena are the result of weakly interacting electron states that lie on nested Fermi surfaces. Here we address the issue by comparing the newly discovered alkaline iron selenide superconductors, which exhibit no Fermi-surface nesting, to their iron pnictide counterparts. We show that the strong-coupling approach leads to similar pairing amplitudes in these materials, despite their different Fermi surfaces. We also find that the pairing amplitudes are largest at the boundary between electronic localization and itinerancy, suggesting that new superconductors might be found in materials with similar characteristics.Comment: Version of the published manuscript prior to final journal-editting. Main text (23 pages, 4 figures) + Supplementary Information (14 pages, 7 figures, 3 tables). Calculation on the single-layer FeSe is added. Enhancement of the pairing amplitude in the vicinity of the Mott transition is highlighted. Published version is at http://www.nature.com/ncomms/2013/131115/ncomms3783/full/ncomms3783.htm
    • …
    corecore