527 research outputs found

    Analysis of the booster DC to DC converter with feedback

    Full text link
    The field effect power transistors are used in many applications in electromechanical systems. Control of the field effect power transistors requires isolated 5V control signals and isolated 12V DC sources. The first problem is resolved by using optical pairs: light emitting diodes with phototransistors. The second problem can be resolved by using impulse voltage sources. The primary coil of a transformer is connected to the battery by a transistor switch. In the first period of operation of this voltage source, the energy is stored in the magnetic field of transformer’s inductance. In the second period, the energy is delivered to the output voltage source. Energy is delivered from the secondary transformer’s coil to the output capacitor through a diode. As a rule, one separate voltage source has a small power, that is why one impulse voltage source can have the necessary number of isolated output voltage sources, i.e., 3, 6, 9, 12, etc So, we can design an impulse DC to DC voltage source with multiple isolated output voltage sources. By changing the charge time of the inductor, we can control the output voltage by using negative feedback proportional to the output voltage and / or a current. In the report, different variants of impulse voltage sources are considered, with analog base elements and on the base of microprocessors. Analyses operation of these impulse voltage sources enable us to determine the period (frequency) of internal operation with ordered maximum transformer efficiency values. The concept of controlled impulse voltage sources is very important because these sources are very simple. They are reliable and have high level of electrical isolation

    The microbial selenoproteome of the Sargasso Sea

    Get PDF
    BACKGROUND: Selenocysteine (Sec) is a rare amino acid which occurs in proteins in major domains of life. It is encoded by TGA, which also serves as the signal for termination of translation, precluding identification of selenoprotein genes by available annotation tools. Information on full sets of selenoproteins (selenoproteomes) is essential for understanding the biology of selenium. Herein, we characterized the selenoproteome of the largest microbial sequence dataset, the Sargasso Sea environmental genome project. RESULTS: We identified 310 selenoprotein genes that clustered into 25 families, including 101 new selenoprotein genes that belonged to 15 families. Most of these proteins were predicted redox proteins containing catalytic selenocysteines. Several bacterial selenoproteins previously thought to be restricted to eukaryotes were detected by analyzing eukaryotic and bacterial SECIS elements, suggesting that eukaryotic and bacterial selenoprotein sets partially overlapped. The Sargasso Sea microbial selenoproteome was rich in selenoproteins and its composition was different from that observed in the combined set of completely sequenced genomes, suggesting that these genomes do not accurately represent the microbial selenoproteome. Most detected selenoproteins occurred sporadically compared to the widespread presence of their cysteine homologs, suggesting that many selenoproteins recently evolved from cysteine-containing homologs. CONCLUSIONS: This study yielded the largest selenoprotein dataset to date, doubled the number of prokaryotic selenoprotein families and provided insights into forces that drive selenocysteine evolution

    A single-copy IS5-like transposon in the genome of a bdelloid rotifer

    Get PDF
    Author Posting. © The Authors, 2009. This is the author's version of the work. It is posted here by permission of Oxford University for personal use, not for redistribution. The definitive version was published in Molecular Biology and Evolution 26 (2009): 1921-1929, doi:10.1093/molbev/msp104.In the course of sequencing telomeric chromosomal regions of the bdelloid rotifer Adineta vaga, we encountered an unusual DNA transposon. Unlike other bdelloid and, more generally, eukaryotic transposable elements (TEs), it exhibits similarity to prokaryotic insertion sequences (IS). Phylogenetic analysis indicates that this transposon, named IS5_Av, is related to the ISL2 group of the IS5 family of bacterial IS elements. Despite the apparent intactness of the single open reading frame coding for a DDE transposase and the perfect identity of its 213-bp terminal inverted repeats (TIRs), the element is present in only one copy per diploid genome. It does not exhibit any detectable levels of transcription, so that its transposase gene appears to be silent in the bdelloid host. While horizontal transfers of TEs between kingdoms are not known to happen in nature, it appears likely that IS5_Av underwent integration into the A. vaga genome relatively recently, but was not successful in adapting to the new host and failed to increase in copy number. Alternatively, it might be the only known member of a novel eukaryotic DNA TE superfamily which is so rare that its other members, if any, have not yet been identified in eukaryotic genomes sequenced to date.This research was supported by the U.S. National Science Foundation grant MCB- 0821956 to I.A

    Identification of Trace Element-Containing Proteins in Genomic Databases

    Get PDF
    Development of bioinformatics tools provided researchers with the ability to identify full sets of trace element–containing proteins in organisms for which complete genomic sequences are available. Recently, independent bioinformatics methods were used to identify all, or almost all, genes encoding selenocysteine-containing proteins in human, mouse, and Drosophila genomes, characterizing entire selenoproteomes in these organisms. It also should be possible to search for entire sets of other trace element–associated proteins, such as metal-containing proteins, although methods for their identification are still in development

    Genome structure of bdelloid rotifers : shaped by asexuality or desiccation?

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Journal of Heredity 101 (2010): S85-S93, doi:10.1093/jhered/esq008.Bdelloid rotifers are microscopic invertebrate animals best known for their ancient asexuality and the ability to survive desiccation at any life stage. Both factors are expected to have a profound influence on their genome structure. Recent molecular studies demonstrated that, while the gene-rich regions of bdelloid genomes are organized as co-linear pairs of closely related sequences and depleted in repetitive DNA, subtelomeric regions harbor diverse transposable elements and horizontally acquired genes of foreign origin. While asexuality is expected to result in depletion of deleterious transposons, only desiccation appears to have the power to produce all of the uncovered genomic peculiarities. Repair of desiccation-induced DNA damage would require the presence of a homologous template, maintaining co-linear pairs in gene-rich regions, and selecting against insertion of repetitive DNA which might cause chromosomal rearrangements. Desiccation may also induce a transient state of competence in recovering animals, allowing them to acquire environmental DNA. Even if bdelloids engage in rare or obscure forms of sexual reproduction, all these features could still be present. The relative contribution of asexuality and desiccation to genome organization may be clarified by analyzing whole-genome sequences and comparing foreign gene and transposon content in species which lost the ability to survive desiccation.This work was supported by the National Science Foundation (grant MCB-0821956 to I.A.)

    A widespread class of reverse transcriptase-related cellular genes

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 108 (2011):20311-20316, doi:10.1073/pnas.1100266108.Reverse transcriptases (RTs) polymerize DNA on RNA templates. They fall into several structurally related but distinct classes, and form an assemblage of RT-like enzymes which, in addition to RTs, also includes certain viral RNA-dependent RNA polymerases (RdRP) polymerizing RNA on RNA templates. It is generally believed that most RT-like enzymes originate from retrotransposons or viruses and have no specific function in the host cell, with telomerases being the only notable exception. Here we report on the discovery and properties of a novel class of RT-related cellular genes collectively named rvt. We present evidence that rvt are not components of retrotransposons or viruses, but single-copy genes with a characteristic domain structure, may contain introns in evolutionarily conserved positions, occur in syntenic regions, and evolve under purifying selection. These genes can be found in all major taxonomic groups including protists, fungi, animals, plants, and even bacteria, although they exhibit patchy phylogenetic distribution in each kingdom. We also show that the RVT protein purified from one of its natural hosts, Neurospora crassa, exists in a multimeric form and has the ability to polymerize NTPs as well as dNTPs in vitro, with a strong preference for NTPs, using Mn2+ as a cofactor. The existence of a previously unknown class of single-copy RT-related genes calls for re-evaluation of the current views on evolution and functional roles of RNA-dependent polymerases in living cells.This work was supported by NSF grant MCB-0821956 to I.A

    Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life

    Get PDF
    In silico and metabolic labeling studies of the selenoproteomes of several eukaryotes revealed distinct selenoprotein patterns as well as an ancient origin of selenoproteins and massive, independent losses in land plants, fungi, nematodes, insects and some protists, suggesting that the environment plays an important role in selenoproteome evolution

    Spectral Analysis of Multi-dimensional Self-similar Markov Processes

    Full text link
    In this paper we consider a discrete scale invariant (DSI) process {X(t),tR+}\{X(t), t\in {\bf R^+}\} with scale l>1l>1. We consider to have some fix number of observations in every scale, say TT, and to get our samples at discrete points αk,kW\alpha^k, k\in {\bf W} where α\alpha is obtained by the equality l=αTl=\alpha^T and W={0,1,...}{\bf W}=\{0, 1,...\}. So we provide a discrete time scale invariant (DT-SI) process X()X(\cdot) with parameter space {αk,kW}\{\alpha^k, k\in {\bf W}\}. We find the spectral representation of the covariance function of such DT-SI process. By providing harmonic like representation of multi-dimensional self-similar processes, spectral density function of them are presented. We assume that the process {X(t),tR+}\{X(t), t\in {\bf R^+}\} is also Markov in the wide sense and provide a discrete time scale invariant Markov (DT-SIM) process with the above scheme of sampling. We present an example of DT-SIM process, simple Brownian motion, by the above sampling scheme and verify our results. Finally we find the spectral density matrix of such DT-SIM process and show that its associated TT-dimensional self-similar Markov process is fully specified by {RjH(1),RjH(0),j=0,1,...,T1}\{R_{j}^H(1),R_{j}^H(0),j=0, 1,..., T-1\} where RjH(τ)R_j^H(\tau) is the covariance function of jjth and (j+τ)(j+\tau)th observations of the process.Comment: 16 page
    corecore