55 research outputs found

    Harmonic Love wave devices for biosensing applications

    Get PDF
    Simultaneous operation of a Love wave biosensor at the fundamental frequency and third harmonic, including the optimisation of IDT metallisation thickness, has been investigated. Data is presented showing a sequence of deposition and removal of a model mass layer of palmitoyl-oleoyl-sn-glycerophosphocholine (POPC) vesicles while frequency hopping between 110 and 330 MH

    Pulse mode operation of Love wave devices for biosensing applications

    Get PDF
    In this work we present a novel pulse mode Love wave biosensor that monitors both changes in amplitude and phase. A series of concentrations of 3350 molecular weight poly(ethylene glycol) (PEG) solutions are used as a calibration sequence for the pulse mode system using a network analyzer and high frequency oscilloscope. The operation of the pulse mode system is then compared to the continuous wave network analyzer by showing a sequence of deposition and removal of a model mass layer of palmitoyl-oleoyl-sn-glycerophosphocholine (POPC) vesicles. This experimental apparatus has the potential for making many hundreds of measurements a minute and so allowing the dynamics of fast interactions to be observed

    Resonant conditions for Love wave guiding layer thickness

    Get PDF
    In this work we report a systematic investigation of polymer overlayer thickness in a Love wave device working at a fundamental frequency of 110MHz and at the 330MHz harmonic. At both frequencies we observe the initial reduction in insertion loss associated with a Love wave device. Significantly, we also observe a series of resonant conditions as the layer thickness is further increased. The separation of these resonances is attributed to an increase in thickness of half of the acoustic wavelength in the polymer

    Sample-to-answer acoustic detection of DNA in complex samples

    Get PDF

    Acoustic Array Biochip Combined with Allele-Specific PCR for Multiple Cancer Mutation Analysis in Tissue and Liquid Biopsy

    Full text link
    [EN] Regular screening of point mutations is of importance to cancer management and treatment selection. Although techniques like next-generation sequencing and digital polymerase chain reaction (PCR) are available, these are lacking in speed, simplicity, and cost-effectiveness. The development of alternative methods that can detect the extremely low concentrations of the target mutation in a fast and cost-effective way presents an analytical and technological challenge. Here, an approach is presented where for the first time an allele-specific PCR (AS-PCR) is combined with a newly developed high fundamental frequency quartz crystal microbalance array as biosensor for the amplification and detection, respectively, of cancer point mutations. Increased sensitivity, compared to fluorescence detection of the AS-PCR amplicons, is achieved through energy dissipation measurement of acoustically ¿lossy¿ liposomes binding to surface-anchored dsDNA targets. The method, applied to the screening of BRAF V600E and KRAS G12D mutations in spiked-in samples, was shown to be able to detect 1 mutant copy of genomic DNA in an excess of 104 wild-type molecules, that is, with a mutant allele frequency (MAF) of 0.01%. Moreover, validation of tissue and plasma samples obtained from melanoma, colorectal, and lung cancer patients showed excellent agreement with Sanger sequencing and ddPCR; remarkably, the efficiency of this AS-PCR/acoustic methodology to detect mutations in real samples was demonstrated to be below 1% MAF. The combined high sensitivity and technology-readiness level of the methodology, together with the ability for multiple sample analysis (24 array biochip), cost-effectiveness, and compatibility with routine workflow, make this approach a promising tool for implementation in clinical oncology labs for tissue and liquid biopsy.This work was supported by the European Union's Horizon H2020-FETOPEN-1-2016-2017 under grant agreement no. 737212 (CATCH-U-DNA).Naoumi, N.; Michaelidou, K.; Papadakis, G.; Simaiaki, AE.; Fernández Díaz, R.; Calero-Alcarria, MDS.; Arnau Vives, A.... (2022). Acoustic Array Biochip Combined with Allele-Specific PCR for Multiple Cancer Mutation Analysis in Tissue and Liquid Biopsy. ACS Sensors. 7(2):495-503. https://doi.org/10.1021/acssensors.1c02245S4955037

    A Sulfhydryl-Reactive Ruthenium (II) Complex and Its Conjugation to Protein G as a Universal Reagent for Fluorescent Immunoassays

    Get PDF
    To develop a fluorescent ruthenium complex for biosensing, we synthesized a novel sulfhydryl-reactive compound, 4-bromophenanthroline bis-2,2′-dipyridine Ruthenium bis (hexafluorophosphate). The synthesized Ru(II) complex was crosslinked with thiol-modified protein G to form a universal reagent for fluorescent immunoassays. The resulting Ru(II)-protein G conjugates were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The emission peak wavelength of the Ru(II)-protein G conjugate was 602 nm at the excitation of 452 nm which is similar to the spectra of the Ru(II) complex, indicating that Ru(II)-protein G conjugates still remain the same fluorescence after conjugation. To test the usefulness of the conjugate for biosensing, immunoglobulin G (IgG) binding assay was conducted. The result showed that Ru(II)-protein G conjugates were capable of binding IgG and the more cross-linkers to modify protein G, the higher conjugation efficiency. To demonstrate the feasibility of Ru(II)-protein G conjugates for fluorescent immunoassays, the detection of recombinant histidine-tagged protein using the conjugates and anti-histidine antibody was developed. The results showed that the histidine-tagged protein was successfully detected with dose-response, indicating that Ru(II)-protein G conjugate is a useful universal fluorescent reagent for quantitative immunoassays

    New acoustic wave sensor geometries

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D062927 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    A novel Love-plate acoustic sensor utilizing polymer overlayers.

    No full text
    A Love-plate sensor, consisting of a surface skimming bulk wave (SSBW) device coated with a polymer layer, was found to increase the acoustic signal through coupling of the SSBW wave to a Love wave. Insertion loss, phase and frequency measurements were used to assess the optimum thickness of the polymer layer and the sensitivity of the device to mass-loading and viscous coupling
    corecore