50,526 research outputs found

    Strangeness Equilibration at GSI Energies

    Full text link
    We develop the notion of "broad-band equilibration" in heavy-ion processes involving dense medium. Given density-dependent \Km-masses we show that the equilibration at GSI energies claimed to hold in previous treatments down to ρ0/4\sim \rho_0/4, can be replaced by a broad-band equilibration in which the \Km-meson and hyperons are produced in an essentially constant ratio independent of density. There are experimental indications that this also holds for AGS energies. We then proceed to argue that {\it both} K+K^+ and KK^- must get lighter in dense medium at some density ρ>ρ0\rho >\rho_0 due to the decoupling of the vector mesons. As a consequence, kaon condensation in compact stars could take place {\it before} chiral restoration since the sum of bare quark masses in the kaon should lie below μe\mu_e. Another consequence of the decoupling vector interactions is that the quasi-particle picture involving (quasi)quarks, presumably ineffective at low densities, becomes more appropriate at higher densities as chiral restoration is approached.Comment: 16 pages, latex with 2 eps figures. Abstract rewritten and references update

    Darboux Transformation of the Green Function for the Dirac Equation with the Generalized Potential

    Full text link
    We consider the Darboux transformation of the Green functions of the regular boundary problem of the one-dimensional stationary Dirac equation. We obtained the Green functions of the transformed Dirac equation with the initial regular boundary conditions. We also construct the formula for the unabridged trace of the difference of the transformed and the initial Green functions of the regular boundary problem of the one-dimensional stationary Dirac equation. We illustrate our findings by the consideration of the Darboux transformation for the Green function of the free particle Dirac equation on an interval.Comment: 14 pages,zip. file: Latex, 1 figure. Typos corrected, the figure replace

    Cervical Cancer-Associated Human Papillomavirus 16 E7 Oncoprotein Inhibits Induction of Anti-Cancer Immunity by a CD4+ T Cell Dependent Mechanism

    Get PDF
    Attempts to develop therapeutic vaccines against cervical cancer have been proven difficult. One of the major causes of the failure is due to the use of the wrong mouse models based on transplantable tumours in testing the efficacy of vaccines. Now that a transgenic epithelial mouse model has been developed to closely mimic cervical cancer, the mechanisms needed to eliminate this type of cancer could be studied. The E7 oncoprotein of Human Papillomavirus (HPV) is the most expressed HPV protein in cervical cancers and its continuous production is essential to maintain the cancerous state and therefore the obvious target in the development of vaccines. Skin grafts expressing the HPV 16 E7 protein (E7 autografts) are not spontaneously rejected from an MHC matched immunocompetent host. Interestingly, simultaneous placement of an MHC mismatched skin (allograft) next to an E7 autograft results in the E7 autograft rejection. However when the allograft also expresses E7, the E7 autograft is rejected more slowly. Autograft rejection requires CD8+ T cells, and is accelerated by removal of CD4+ T cells after placement of the E7 expressing allograft, suggesting induction of an E7 specific CD4+ regulatory T cell population by the E7 expressing allograft. This observation may have implications in designing effective vaccines and immunotherapy against cervical cancers in women

    Long-lived domain wall plasmons in gapped bilayer graphene

    Full text link
    Topological domain walls in dual-gated gapped bilayer graphene host edge states that are gate- tunable and valley polarized. Here we predict that plasmonic collective modes can propagate along these topological domain walls even at zero bulk density, and possess a markedly different character from that of bulk plasmons. Strikingly, domain wall plasmons are extremely long-lived, with plasmon lifetimes that can be orders of magnitude larger than the transport scattering time in the bulk. While most pronounced at low temperatures, long domain wall plasmon lifetimes persist even at room temperature with values up to a few picoseconds. Domain wall plasmons possess a rich phenomenology including a wide range of frequencies (up to the mid-infrared), tunable sub-wavelength electro-magnetic confinement lengths, as well as a valley polarization for forward/backward propagating modes. Its unusual features render them a new tool for realizing low-dissipation plasmonics that transcend the restrictions of the bulk

    S matrix of collective field theory

    Full text link
    By applying the Lehmann-Symanzik-Zimmermann (LSZ) reduction formalism, we study the S matrix of collective field theory in which fermi energy is larger than the height of potential. We consider the spatially symmetric and antisymmetric boundary conditions. The difference is that S matrices are proportional to momenta of external particles in antisymmetric boundary condition, while they are proportional to energies in symmetric boundary condition. To the order of gst2g_{st}^2, we find simple formulas for the S matrix of general potential. As an application, we calculate the S matrix of a case which has been conjectured to describe a "naked singularity".Comment: 19 page, LaTe

    Kaluza-Klein masses of bulk fields with general boundary conditions in AdS5_5

    Full text link
    Recently bulk Randall-Sundrum theories with the gauge group SU(2)L×SU(2)R×U(1)BLSU(2)_L \times SU(2)_R \times U(1)_{B-L} have drawn a lot of interest as an alternative to electroweak symmetry breaking mechanism. These models are in better agreement with electroweak precision data since custodial isospin symmetry on the IR brane is protected by the extended bulk gauge symmetry. We comprehensively study, in the S^1/\ZZ orbifold, the bulk gauge and fermion fields with the general boundary conditions as well as the bulk and localized mass terms. Master equations to determine the Kaluza-Klein (KK) mass spectra are derived without any approximation, which is an important basic step for various phenomenologies at high energy colliders. The correspondence between orbifold boundary conditions and localized mass terms is demonstrated not only in the gauge sector but also in the fermion sector. As the localized mass increases, the first KK fermion mass is shown to decrease while the first KK gauge boson mass to increase. The degree of gauge coupling universality violation is computed to be small in most parameter space, and its correlation with the mass difference between the top quark and light quark KK mode is also studied.Comment: 25 pages with 10 figures, Final version accepted by PR

    Influence of Primary Cosmic Radiation Mass Composition on the Estimation of Eas Energy

    Full text link
    At the Yakutsk EAS array E_em is determined by using measurements of EAS Cherenkov light flux and charged particle flux. It is known from calculations that these characteristics depend on a sort of primary particle and, therefore, the estimation of E_em depends on a primary particle mass. In the work the dependence of the E_em/E_0 ratio on the energy is given and experimental data are compared with calculations by the QGSJET model. The calculations have been carried out for the primary proton and iron nucleus. The average calculated meaning of the value of E_em/E_0 ratio (between the proton and iron nucleus) within experimental errors is in agreement with experimental data that doesnt contradict to the mixed mass composition of primary cosmic radiation.Comment: 19th European Cosmic Ray Symposium. Aug 30 - Sep 3 2004, Florence, Italy. 3 pages, 1 figure. Subbmitted for publication in International Journal of Modern Physics

    q-Deformation of W(2,2) Lie algebra associated with quantum groups

    Full text link
    An explicit realization of the W(2,2) Lie algebra is presented using the famous bosonic and fermionic oscillators in physics, which is then used to construct the q-deformation of this Lie algebra. Furthermore, the quantum group structures on the q-deformation of this Lie algebra are completely determined.Comment: 12 page

    Pion electromagnetic form factor at finite temperature

    Get PDF
    Temperature effects on the electromagnetic couplings of pions in hot hadronic matter are studied with an effective chiral Lagrangian. We show that the Ward-Takahashi identity is satisfied at non-zero temperature in the soft pion limit. The in-medium electromagnetic form factor of the pion is obtained in the time-like region and shown to be reduced in magnitude, especially near the vector-meson resonance region. Finally, we discuss the consequences of this medium effect on dilepton production from hot hadronic matter.Comment: 29 pages (LaTex) + 11 figure

    Quark Orbital Angular Momentum in the Baryon

    Full text link
    Analytical and numerical results, for the orbital and spin content carried by different quark flavors in the baryons, are given in the chiral quark model with symmetry breaking. The reduction of the quark spin, due to the spin dilution in the chiral splitting processes, is transferred into the orbital motion of quarks and antiquarks. The orbital angular momentum for each quark flavor in the proton as a function of the partition factor κ\kappa and the chiral splitting probability aa is shown. The cancellation between the spin and orbital contributions in the spin sum rule and in the baryon magnetic moments is discussed.Comment: 26 pages, 3 figures, revised version with minor eq. no and ref. no. corrections. Discussion on the Λ\Lambda spin and a new ref. are adde
    corecore