research

Kaluza-Klein masses of bulk fields with general boundary conditions in AdS5_5

Abstract

Recently bulk Randall-Sundrum theories with the gauge group SU(2)L×SU(2)R×U(1)BLSU(2)_L \times SU(2)_R \times U(1)_{B-L} have drawn a lot of interest as an alternative to electroweak symmetry breaking mechanism. These models are in better agreement with electroweak precision data since custodial isospin symmetry on the IR brane is protected by the extended bulk gauge symmetry. We comprehensively study, in the S^1/\ZZ orbifold, the bulk gauge and fermion fields with the general boundary conditions as well as the bulk and localized mass terms. Master equations to determine the Kaluza-Klein (KK) mass spectra are derived without any approximation, which is an important basic step for various phenomenologies at high energy colliders. The correspondence between orbifold boundary conditions and localized mass terms is demonstrated not only in the gauge sector but also in the fermion sector. As the localized mass increases, the first KK fermion mass is shown to decrease while the first KK gauge boson mass to increase. The degree of gauge coupling universality violation is computed to be small in most parameter space, and its correlation with the mass difference between the top quark and light quark KK mode is also studied.Comment: 25 pages with 10 figures, Final version accepted by PR

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020