5,415 research outputs found

    Breaking of k_\perp-factorization for Single Jet Production off Nuclei

    Full text link
    The linear k_\perp-factorization is part and parcel of the pQCD description of high energy hard processes off free nucleons. In the case of heavy nuclear targets the very concept of nuclear parton density becomes ill-defined as exemplified by the recent derivation [2] of nonlinear nuclear k_\perp-factorization for forward dijet production in DIS off nuclei. Here we report a derivation of the related breaking of k_\perp-factorization for single-jet processes. We present a general formalism and apply it to several cases of practical interest: open charm and quark and gluon jet production in the central to beam fragmentation region of \gamma^*p,\gamma^*A, pp and pA collisions. We show how the pattern of k_\perp-factorization breaking and the nature and number of exchanged nuclear pomerons do change within the phase space of produced quark and gluon jets. As an application of the nonlinear k_\perp-factorization we discuss the Cronin effect. Our results are also applicable to the p_\perp-dependence of the Landau-Pomeranchuk-Migdal effect for, and nuclear quenching of, jets produced in the proton hemisphere of pA collisions.Comment: 55 pages, 9 eps figures, presentation shortened, a number of typos removed, to appear in Phys. Rev.

    Unitarity cutting rules for the nucleus excitation and topological cross sections in hard production off nuclei from nonlinear k_t-factorization

    Full text link
    At the partonic level, a typical final state in small-x deep inelastic scattering off nuclei and hard proton-nucleus collisions can be characterized by the multiplicity of color-excited nucleons. Within reggeon field theory, each color-excited nucleon is associated with the unitarity cut of the pomeron exchanged between the projectile and nucleus. In this communication we derive the unitarity rules for the multiplicity of excited nucleons, alias cut pomerons, alias topological cross sections, for typical hard dijet production processes. We demonstrate how the coupled-channel non-Abelian intranuclear evolution of color dipoles, inherent to pQCD, gives rise to the reggeon field theory diagrams for final states in terms of the uncut, and two kinds of cut, pomerons. Upon the proper identification of the uncut and cut pomeron exchanges, the topological cross sections for dijet production follow in a straightforward way from the earlier derived nonlinear k_t - factorization quadratures for the inclusive dijet cross sections. The concept of a coherent (collective) nuclear glue proves extremely useful for the formulation of reggeon field theory vertices of multipomeron - cut and uncut - couplings to particles and between themselves. A departure of our unitarity cutting rules from the ones suggested by the pre-QCD Abramovsky-Kancheli-Gribov rules, stems from the coupled-channel features of intranuclear pQCD. We propose a multiplicity re-summation as a tool for the isolation of topological cross sections for single-jet production.Comment: 53 pages, 16 eps-figures, to appear in Phys. Rev.

    Quenching of Leading Jets and Particles: the p_t Dependent Landau-Pomeranchuk-Migdal effect from Nonlinear k_t Factorization

    Full text link
    We report the first derivation of the Landau-Pomeranchuk-Migdal effect for leading jets at fixed values of the transverse momentum p_t in the beam fragmentation region of hadron-nucleus collisions from RHIC (Relativistic Heavy Ion Collider) to LHC (Large Hadron Collider). The major novelty of this work is a derivation of the missing virtual radiative pQCD correction to these processes - the real-emission radiative corrections are already available in the literature. We manifestly implement the unitarity relation, which in the simplest form requires that upon summing over the virtual and real-emission corrections the total number of scattered quarks must exactly equal unity. For the free-nucleon target, the leading jet spectrum is shown to satisfy the familiar linear Balitsky-Fadin-Kuraev-Lipatov leading log(1/x) (LL-1/x) evolution. For nuclear targets, the nonlinear k_t-factorization for the LL-1/x evolution of the leading jet sepctrum is shown to exactly match the equally nonlinear LL-1/x evolution of the collective nuclear glue - there emerges a unique linear k_t-factorization relation between the two nonlinear evolving nuclear observables. We argue that within the standard dilute uncorrelated nucleonic gas treatment of heavy nuclei, in the finite energy range from RHIC to LHC, the leading jet spectrum can be evolved in the LL-1/x Balitsky-Kovchegov approximation. We comment on the extension of these results to, and their possible reggeon field theory interpretation for, mid-rapidity jets at LHC.Comment: 36 pages, 8 eps figs, revised, discussion on reggeon interpretation and refs. adde

    The Running BFKL: Resolution of Caldwell's Puzzle

    Get PDF
    The HERA data on the proton structure function, F2(x,Q2)F_2(x,Q^2), at very small xx and Q2Q^2 show the dramatic departure of the logarithmic slope, F2/logQ2\partial F_2/\partial\log Q^2, from theoretical predictions based on the DGLAP evolution. We show that the running BFKL approach provides the quantitative explanation for the observed xx and/or Q2Q^2 -dependence of F2/logQ2\partial F_2/\partial\log Q^2.Comment: 7 pages, Latex, 4 Figures, P

    Evolution of high-mass diffraction from the light quark valence component of the pomeron

    Get PDF
    We analyze the contribution from excitation of the (qqˉ)(ffˉ),(qqˉ)g1...gn(ffˉ)(q\bar q)(f\bar f),(q\bar q)g_1...g_n(f\bar f) Fock states of the photon to high mass diffraction in DIS. We show that the large Q2Q^2 behavior of this contribution can be described by the DLLA evolution from the non-perturbative ffˉf\bar f valence state of the pomeron. Although of higher order in pQCD, the new contribution to high-mass diffraction is comparable to that from the excitation of the qqˉgq\bar q g Fock state of the photon.Comment: 12 pages, 2 figures, the oublished version. The slight numerical errors corrected, all conclusions are retaine

    Non universality of structure functions and measurement of the strange sea density

    Full text link
    We show that there is no real conflict between the two determinations of the strange sea density from the opposite--sign dimuon production and from the difference of the F2F_2 structure functions measured in neutrino and muon deep inelastic scattering. Once non universal sea parton densities are introduced, which take into account the effects of different mass thresholds and different longitudinal contributions, the discrepancy is shown to disappear and both sets of data are simultaneously well reproduced. No need for a large strange sea content of the nucleon emerges.Comment: latex, DFTT-93-3

    The Strange Quark Distribution

    Get PDF
    We discuss the latest CCFR determination of the strange sea density of the proton. We comment on the differences with a previous, leading--order, result and point out the relevance of quark mass effects and current non--conservation effects. By taking them into account it is possible to solve the residual discrepancy with another determination of the strange quark distribution. Two important sources of uncertainties are also analyzed.Comment: 19page
    corecore