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bL.D. Landau Institute for Theoretical Physics, Moscow 117940, Russia

c ITEP, Moscow 117218, Russia.

Abstract

We analyze the contribution from excitation of the (qq̄)(f f̄), (qq̄)g1...gn(f f̄) Fock states
of the photon to high mass diffraction in DIS. We show that the large Q2 behavior of this
contribution can be described by the DLLA evolution from the non-perturbative f f̄ valence
state of the pomeron. Although of higher order in pQCD, the new contribution to high-mass
diffraction is comparable to that from the excitation of the qq̄g Fock state of the photon.
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In this communication we report a direct evaluation of high-mass diffractive deep inelastic

scattering (DIS) from excitation of the (qq̄)(f f̄) Fock states of the photon, fig. 1, where q

and f are the light quarks. The interest in this problem can be formulated as follows.
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Figure 1: The color dipole structure of diffractive excitation of perturbative (qq̄)(f f̄) state of

the photon with the rapidity gap ∆η from the proton. The contribution of other diagrams with

radiation of the gluon and/or splitting g → f f̄ after the interaction with the target vanishes

to DLLA.

On the one hand, within perturbative QCD (pQCD) diffractive DIS, γ∗p → X + p′, can

be described as quasi-elastic scattering and excitation of the multiparton Fock states X of

the incident photon of virtuality Q2 [1, 2]. As such it is a manifestly nonlinear - quadratic

- functional of the dipole cross section for the multiparton states, X = qq̄, qq̄g, .... For the

forward case, t = 0, where t is the (p, p′) momentum transfer squared,

dσD

dt

∣

∣

∣

∣

∣

t=0

=
1

16π

[

〈qq̄|σ2|qq̄〉 + 〈qq̄g|σ2
3 − σ2|qq̄g〉 + ...

]

, (1)

where σ and σ3 stand for the dipole cross section for the Fock states |qq̄〉, |qq̄g〉, respectively,

interacting with the proton target, evaluated at the starting point of the small-x evolution,

xIP = x0. On the other hand, motivated by the triple-reggeon approach to diffraction exci-

tation [3], one would like to reinterpret high-mass diffractive DIS as an inclusive DIS off the

pomeron,

(Q2 + M2)
dσD

dtdM2

∣

∣

∣

∣

∣

t=0

= 〈qq̄|σIP(xIP, β, r)|qq̄〉 . (2)
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If possible at all, such a color dipole representation will only be meaningful if the effect of

higher Fock states of the photon can consistently be reabsorbed into the small-β evolution of

σIP(xIP, β, r) [2, 4]. Here β = Q2/(M2 + Q2), where M is the mass of the diffractive system,

is the Bjorken variable for DIS off the pomeron, xIP = x/β is the rapidity gap variable - the

fraction of the proton’s lightcone momentum carried by the exchanged pomeron, x = Q2/2mν

is the standard Bjorken variable for DIS off the proton and ν is the photon energy.

A priori it is not clear that the nonlinear (1) can be cast in the linear form (2). Fur-

thermore, the expectation values of the square of the dipole cross section in (2) tend to be

dominated by the contribution from large, non-perturbative, dipoles: r ∼ rf = 1/mf ∼ 1 fm

for the excitation of qq̄ states, which is the Born term for β ∼ 1, and ρ ∼ Rc ∼ 0.25 fm for the

Born term of high-mass, i.e., small-β, diffractive DIS: excitation of the qq̄g Fock states (for

the determination of the propagation radius of perturbative gluons, Rc, from lattice QCD and

elsewhere see [5, 6]). Still, despite the manifestly nonperturbative Born term, the resumma-

tion of double-leading-log approximation (DLLA) - strongly ordered energy and dipole size -

contributions from qq̄g1...gn excitation is possible and has been shown to correspond to the

familiar DLLA evolution of the diffractive structure function [2]. Starting from [7], in the

phenomenological studies of diffractive DIS it has become customary to apply the DGLAP

evolution [8] to the whole diffractive structure function (SF)

fD(4)(t = 0, xIP, β, Q2) = xIPF
D(4)
2 (t = 0, xIP, β, Q2) =

Q2

4π2αem

(Q2 + M2)
dσD

dtdM2

∣

∣

∣

∣

∣

t=0

(3)

(being differential in t, the so-defined diffractive SF is dimensionfull, and σIP(xIP, β, r) has a

dimension [mb]2, but that does not affect its evolution properties. The t-integrated diffractive

SF is dimensionless, but the modulation of the SF by the β-dependent diffraction slope [9]

can spoil the evolution properties, and herebelow we focus on forward diffraction, t = 0.)

Although it has been argued to be plausible [10], and the DGLAP evolution analyses met

certain phenomenological success ([11, 12, 13] and references therein, for the review see [14]),

a direct demonstration of such a DGLAP evolution property of diffractive DIS is still missing.

The principal problem with extension of the analysis [2] to the contribution of the (qq̄)(f f̄),

(qq̄)g1...gn(f f̄) Fock states is that the f f̄ dipoles have a large non-perturbative size, R ∼ rf =

1/mf ≫ Rc. The gross features of β-distribution in γ∗p → (f f̄)p′ are well understood: in
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close analogy to the valence structure function of the proton, it is peaked at β ∼ 1/2, so

that only finite masses, M2 ∼ Q2, are excited [1, 15]. However, it is not obvious that this

non-perturbative valence β-distribution defined by γ∗p → (f f̄)p′ will enter the evolution of

the qq̄ sea of the pomeron in precisely the same way as the valence quark density enters the

evolution of the sea of nucleons. Here we report a direct demonstration that such a pQCD

evolution holds at least to the DLLA accuracy. Furthermore, we show that although the

(qq̄)(f f̄) contribution is of higher order in the pQCD coupling αS, see Fig. 1, it is enhanced

by a potentially large numerical factor, ∝ [σ(rf)/σ(Rc)]
2, and numerically it is comparable

to the leading order qq̄g contribution. We report also a derivation of the inclusive spectrum

of gluon jets from diffraction excitation of the qq̄g states of the photon, which clarifies the

small-r2 scaling properties of σIP(xIP, β, r).

The further presentation is organized as follows. We start with the brief introduction into

the color dipole description of small-β diffraction and demonstration of the representation

(2) for excitation of the qq̄g state. Then we show how the DLLA contribution from (qq̄)(f f̄)

excitation to fD(4)(t = 0, xIP, β, Q2) can be cast in the form (2) with σIP(xIP, β, r) evaluated

for scattering of the qq̄ dipole on the f f̄ valence state of the pomeron. We present the DLLA

evaluation of the small-β diffractive SF, compare our results with experimental data [12, 13]

and conclude with a brief summary.

In the color dipole QCD approach to DIS [16, 2, 4] the two principal quantities are the

dipole cross section, σ(x, r), for interaction of the qq̄ dipole r with the proton target and the

qq̄ dipole size distribution in the projectile photon e2
q |Ψγ∗(Q2, z, r)|2. In terms of σ(x, r) the

cross section of inclusive DIS has the form of an expectation value over the qq̄ Fock state,

σγ∗p(x, Q2) = 〈qq̄|σ(x, r)|qq̄〉, the effect of higher order perturbative Fock states, qq̄g1...gn,

can be reabsorbed into the leading log (1/x) color dipole BFKL evolution of σ(x, r). The

relationship between the dipole cross section and the unintegrated gluon structure function

F(x, κ2) = ∂G(x, κ2)/∂ log κ2, reads

σ(x, r) =
4παS(r2)

Nc

∫

d2
κ

(κ2 + µ2
G)2

[1 − exp(iκr)]F(x, κ2) ≈
π2αS(r2)

Nc

r2G(x,
A

r2
), (4)

where Rc = 1/µG is the Yukawa correlation radius for perturbative gluons and in the DLLA

for small dipoles A ≃ 10. Because of log Q2 scaling violations G(x, A/r2) rises with the hard
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scale A/r2. To the lowest order in pQCD [16, 17]

F(x, κ2) =
CFαS(κ2)

π
· NcVN(κ) , (5)

where NcVN(κ) can be regarded as the number of valence partons in the proton resolved by

gluons at the scale κ
2. Here the vertex function VN(κ) = 1 − G2(κ,−κ) and the two-quark

form-factor of the target nucleon, G2(κ,−κ), vanishes for κ
2
∼> R−2

N , where RN is the radius

of the nucleon.

The qq̄g contribution to (1) describes the first iteration of the log (1/β) evolution of diffrac-

tive DIS and can be separated into the radiative correction to the small-mass qq̄ excitation

and the Born term of the high-mass qq̄g excitation as follows. Let r, ρ and ρ − r be the

q̄-q, g-q and g-q̄ separations in the impact parameter (transverse size) plane. The qq̄g 3-body

interaction cross section equals [2]

σ3(x, r, ρ) =
CA

2CF

[σ(x, ρ) + σ(x, ρ − r)] −
1

N2
c − 1

σ(x, r) . (6)

For soft perturbative gluons carrying a small fraction of photon’s momentum, zg ≪ 1, and

Yukawa infrared regularization the wave function of the 3-parton qq̄g state equals [2, 4]

|Φ(r, ρ, z, zg)|
2 =

e2
qCFαS(r2)

π2zg

|Ψγ∗(Q2, z, r)|2
∣

∣

∣

∣

∣

µGK1(µGρ)
ρ

ρ
− µGK1(µG|ρ − r|)

ρ − r

|ρ − r|

∣

∣

∣

∣

∣

2

=
e2

q

zg

· |Ψγ∗(Q2, z, r)|2 · K(ρ − r, ρ) ≃
e2

qCFαS(r2)

π2zg

|Ψγ∗(Q2, z, r)|2
r2

ρ4
F (µGρ) (7)

where K(ρ − r, ρ) is the kernel of the color dipole BFKL equation

∂σ(x, r)

∂ log 1
x

= K ⊗ σ(x, r) =
2CF

CA

∫

d2
ρ K(ρ − r, ρ)[σ3(x, r, ρ) − σ(x, r)]

=
∫

d2
ρ K(ρ − r, ρ)[σ(x, ρ) + σ(x, ρ − r) − σ(x, r)] (8)

and we also showed the DLLA approximation for r2 ≪ ρ
2. The form factor of the infrared

cutoff, F (z), satisfies F (0) = 1 and F (z) ∝ exp(−2z) at z > 1 [2, 7].

Now notice, that in view of (7) the qḡg contribution to(1) can be rearranged as

K · (σ2
3 − σ2) = 2σK · (σ3 − σ) + K · (σ3 − σ)2 . (9)
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The first term in the rhs of (9) is the radiative correction to the small-mass qq̄ excitation

with the rapidity gap xIP ∼ x, i.e. the contribution from the 2-parton state to the total cross

section of diffraction (1) must be calculated with the BFKL-evolved

σ(xIP, r) = σ(x0, r) +
∫ x0

xIP

dx′

x′
K ⊗ σ(x′, r) . (10)

The second term in (9) is the Born tern of the high-mass 3-parton, qq̄g, excitation with the

rapidity gap xIP = x0. In the high-mass regime dzg/zg = dM2/(M2 + Q2) and after undoing

the zg-integration the DLLA 3-parton cross section takes the form

(Q2 + M2)
dσD

qq̄g

dtdM2

∣

∣

∣

∣

∣

t=0

=

1

16π

∫

dzd2rd2
ρ

{

zg|Φ(r, ρ, z, zg)|
2
}

zg=0
· [σ3(xIP, r, ρ) − σ(xIP, r)]2

≃
1

16π

∫

dz d2r |Ψγ∗(Q2, z, r)|2
π2αS(r2)

Nc

r2 ·
C2

ANc

CF

∫

r2

d2
ρ

[

σ(xIP, ρ)

ρ2

]2

F (µGρ) . (11)

It gives a flat small-β behaviour of fD(4)(t = 0, xIP, β, Q2) with the strength controlled [2, 15]

by non-perturbative large ρ, cut off from above at ρ ∼ Rc by the nonperturbative form factor

F (µGρ). The small-ρ integration can safely be extended to ρ = 0, so that (11) is of the desired

color dipole form (2) and can be treated as DIS off the sea generated by perturbative splitting

of gluons from the valence gg state of the pomeron. There is one caveat, though: the gluon

density in the pomeron defined by eq. (11),

GIP

gg(xIP, β) =
C2

ANc

CF

·
∫

d2
ρ

[

σ(xIP, ρ)

ρ2

]2

F (µGρ) , (12)

is short of the collinear scaling violations present in (4).

The extension of the above analysis to the DLLA description of diffractive excitation of the

high-mass (qq̄)(f f̄) Fock state of the photon proceeds as follows. As we shall see a posteriori,

the DLLA contribution comes from r2 ≪ ρ
2 ≪ R2. First we recall that the qq̄ excitation is

dominated by very asymmetric pairs, in which one of the final partons carries a very small

fraction of the photons momentum, z ∼ m2
q/Q

2 ≪ 1, so that in the impact parameter space

the fast parton with z̄ = 1−z flies along the photon’s trajectory, while the slower parton is at

large transverse distance r ∼ 1/mq from the parent photon [1]. Consequently, the fast parton

of the f f̄ shall have the same impact parameter as the gluon radiated by the parent qq̄ dipole.
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In view of the DLLA ordering, r2 ≪ ρ
2 ≪ R2, the partons of the parent qq̄ dipole and the

fast parton of the radiative f f̄ pair can be treated as the pointlike (anti)triplet color charge,

and the (qq̄)(f f̄) state interacts with the target nucleon as the f f̄ dipole with the dipole cross

section σ(xIP,R). The distribution of f f̄ color dipoles in the gluon of transverse momentum

κ is identical to that in the photon subject to the substitutions Ncαeme2
f → TF αS(κ2) and

Q2 → κ
2, so that the diffractive cross section of interest equals

(Q2 + M2)
dσD

(qq̄)(ff̄ )

dtdM2

∣

∣

∣

∣

∣

∣

t=0

=
1

16π

∫

d2
κ

dgqq̄(Q
2, κ)

d2κ
·
TF αS(κ2)

Ncαeme2
f

〈f f̄ |σ2(xIP,R)|f f̄〉 , (13)

where the flux of gluons in the parent qq̄ state is given by the momentum-space version of

(7):

dgqq̄(Q
2, κ)

d2κ
=

∫ 1

0
dzq

∫

d2r
∣

∣

∣Ψγ∗(Q2, zq, r)
∣

∣

∣

2 2e2
qCFαS(r2)

π2
·
[1 − exp(iκr)]

(κ2 + µ2
G)2

κ
2 . (14)

Finally, notice that

κ
2

4π2αem

·
1

16πe2
f

〈f f̄ |σ2(xIP,R)|f f̄〉 =
κ

2

4π2αem

·
dσ(γ∗(κ2) → f f̄)

dt

∣

∣

∣

∣

∣

t=0

=
1

e2
f

∫ 1

0

dβ

β
f

D(4)

ff̄
(t = 0, xIP, β, κ2) = N IP

ff̄ (xIP, κ2) (15)

where N IP

ff̄
(xIP, κ2) can be reinterpreted as a number of charged valence partons, i.e., twice

the number of f f̄ dipoles, in the pomeron. Upon the substitution of (15) and (14) into (13)

one readily recovers the dipole representation (2), in which σIP(xIP, β, r) is evaluated from

equation (4) in which unintegrated gluon density (5) is substituted for by the unintegrated

gluon density evolved from the f f̄ state of the pomeron

F IP

ff̄ (β, κ2) =
CF αS(κ2)

π
N IP

ff̄ (xIP, κ2) . (16)

Furthermore, N IP

ff̄
(xIP, κ2) vanishes at κ

2 = 0 and, according to [16, 1], flattens at κ
2 ≫

m2
f which, in comparison to (5) suggests the transverse size of the f f̄ component of the

pomeron rf ∼ 1/mf . One can come to the same conclusion from the point that the dominant

contribution to (14) comes from f f̄ dipoles with R ∼ 1/mf .

The DLLA analysis of qq̄g1...gn excitation developed in [2] can readily be extended to the

higher, (qq̄)g1..gn(f f̄), states. The crucial point is that to DLLA the f f̄ dipole is the largest
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one, so that the corresponding contribution to the diffractive cross section is still given by

equation (13) where the DLLA evolution is reabsorbed into the flux of gluon gn, which is

the softest with respect to the photon. Viewed from the pomeron side, that amounts to the

DLLA small-β evolution of σIP(xIP, β, r) with the boundary condition defined by gluon density

(16). As such, the emerging logn−1 (1/β) · logn (1/αS(r2)) structure of DLLA expansion in the

energy and collinear logarithms for diffractive SF from (qq̄)g1..gn(f f̄) excitation is identical to

DLLA structure of the proton SF. As shown in [2], DLLA expansion for diffractive SF from

(qq̄)g1..gn excitation is of a marginally different structure logn−1 (1/β) · logn−1 (1/αS(r2)).

Besides that, the two components of the diffractive structure function have a manifestly

different xIP-dependence [7]: driven by σ(xIP, rf) in (16) for the qq̄, (qq̄)(f f̄), (qq̄)g1..gn(f f̄)

excitations and by σ(xIP, Rc) for the (qq̄)g1..gn excitations. This concludes the proof of the

DLLA small-β evolution at fixed xIP of such a two-component diffractive structure function

fD(4)(t = 0, xIP, β, Q2).

The absence of a scaling violation in (11) and (12) implies that in contrast to (5) the

corresponding unintegrated gluon density FD
gg(β, κ2) vanishes for large κ

2. A closely related

observable is the transverse momentum, p, spectrum of semihard diffractive gluons with

p2 ≪ r−2 ≪ Q2 [18]. Since p is a variable conjugate to ρ, upon the relevant Fourier

transforms

(Q2 + M2)
dσD(γ∗ → gX)

dtdM2d2p

∣

∣

∣

∣

∣

t=0

=
1

16π(2π)2

∫

dzd2rCF |Ψγ∗(z, r)|2
αS(r)

π2

×

∣

∣

∣

∣

∣

∫

d2
ρ exp(ipρ)

[

ρ

ρ2
−

ρ − r

(ρ − r)2

]

[σ3(xIP, r, ρ) − σ(xIP, r)]

∣

∣

∣

∣

∣

2

=
∫

dzd2r|Ψγ∗(z, r)|2
παS(r2)

Nc

r2 ·
C2

A

4CFNc

·

[

αS(p2)G(xIP,p2)

p2

]2

(17)

Within the reinterpretation of diffraction as DIS of pomerons, the p has a meaning of intrinsic

transverse momentum in the valence gg state of the pomeron. Indeed, the spectrum (17) falls

steeper than the 1/p2 spectrum of gluons from inclusive DIS off a nucleon.

The numerical results for high-mass, small-β, diffraction depend on the input dipole cross

section σ(x, r). Here we evaluate the lowest order qq̄g and (qq̄)(f f̄) contributions to diffractive

DIS in a specific color dipole BFKL model [4, 19] which gives a good description of the

proton SF data. The applicability domain of the small-β, small-xIP formalism is β, xIP <
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Figure 2: The comparison with the experimental data on small-β, small-xIP diffractive

structure function ([12], full circles; [13], full triangle) of the theoretical evaluation of

fD(3) = f
D(3)
qq̄g + f

D(3)

(qq̄)(ff̄)
shown by the solid line. The dotted line corresponds to f

D(3)
qq̄g and the

dashed line represents f
D(3)

(qq̄)(ff̄)
.

x0 ≪ 1, the experience with inclusive DIS suggests x0 ∼ 0.03, although the theoretical

curves in fig. 2 are stretched up to xIP = 0.1. This small-β, small-xIP domain is almost

at the boundary of the HERA experiments, the corresponding experimental data on the t-

integrated diffractive structure function fD(3)(xIP, β, Q2) from H1 ([12], circles) and ZEUS

([13], triangles) are shown in fig. 2. We evaluate this structure function as fD(3)(xIP, β, Q2) =
∫

dtfD(4)(t, xIP, β, Q2) ≈ 1
B3IP

fD(4)(t = 0, xIP, β, Q2) with the central value of the diffraction

slope BIP = BD = 7.2 ± 1.1+0.7
−0.9 GeV−2 as reported by ZEUS [20]. The apparent growth of

the experimentally observed fD(3)(xIP, β, Q2) towards large xIP ∼ 0.1 is usually attributed to

the non-vacuum admixture to the pomeron exchange. Two features of the theoretical results
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for small-β diffraction are noteworthy. First, the contributions from qq̄g and higher-order

(qq̄)(f f̄) states are of comparable magnitude because Rc ≪ rf and the latter is enhanced

∝ [σ(xIP, rf)/σ(xIP, Rc)]
2. Second, because of the same inequality of the important dipole

sizes, Rc ≪ rf , the xIP-dependence of the qq̄g excitation is steeper than that of the (qq̄)(f f̄)

excitation. This point has been made already in [7], the numerically significant contribution

from the (qq̄)(f f̄) excitation makes the overall xIP-dependence of fD(3)(xIP, β, Q2) weaker

than evaluated in [7] for the pure qq̄g excitation. The solid curve in fig. 2 is the combined

contribution from the two mechanisms. It is in reasonably good agreement with the HERA

data.

To summarize, we reported the first explicit proof of the DLLA evolution property of the

contribution to diffractive structure function from excitation of (qq̄)(f f̄), (qq̄)g1...gn(f f̄) Fock

states of the photon. We demonstrated that the corresponding diffractive SF can be cast in

the color dipole representation. The boundary condition for the DLLA small-β evolution is

provided by the Born dipole cross section built perturbatively upon the valence f f̄ state of

the pomeron, as defined by the γ∗p → (f f̄)p′ excitation, in precisely the same manner as

in inclusive DIS off the nucleon starting with the valence quark distribution. Compared to

the qq̄g excitation, the (qq̄)(f f̄) is of higher order to pQCD. Still the numerical evaluations

confirm the expectation that the pQCD αS suppression is compensated for by the larger

dipoles in the (qq̄)(f f̄) state compared to the qq̄g state of the photon.

This work has been partly supported by the INTAS grant 00-00366 and the DFG grant

436RUS17/72/03.
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