7,883 research outputs found

    En-route to the fission-fusion reaction mechanism: a status update on laser-driven heavy ion acceleration

    Full text link
    The fission-fusion reaction mechanism was proposed in order to generate extremely neutron-rich nuclei close to the waiting point N = 126 of the rapid neutron capture nucleosynthesis process (r-process). The production of such isotopes and the measurement of their nuclear properties would fundamentally help to increase the understanding of the nucleosynthesis of the heaviest elements in the universe. Major prerequisite for the realization of this new reaction scheme is the development of laser-based acceleration of ultra-dense heavy ion bunches in the mass range of A = 200 and above. In this paper, we review the status of laser-driven heavy ion acceleration in the light of the fission-fusion reaction mechanism. We present results from our latest experiment on heavy ion acceleration, including a new milestone with laser-accelerated heavy ion energies exceeding 5 MeV/u

    Neutrino Physics: Open Theoretical Questions

    Full text link
    We know that neutrino mass and mixing provide a window to physics beyond the Standard Model. Now this window is open, at least partly. And the questions are: what do we see, which kind of new physics, and how far "beyond"? I summarize the present knowledge of neutrino mass and mixing, and then formulate the main open questions. Following the bottom-up approach, properties of the neutrino mass matrix are considered. Then different possible ways to uncover the underlying physics are discussed. Some results along the line of: see-saw, GUT and SUSY GUT are reviewed.Comment: 17 pages, latex, 12 figures. Talk given at the XXI International Symposium on Lepton and Photon Interactions at High Energies, ``Lepton Photon 2003", August 11-16, 2003 - Fermilab, Batavia, IL US

    Vortex Dynamics and Hall Conductivity of Hard Core Bosons

    Get PDF
    Magneto-transport of hard core bosons (HCB) is studied using an XXZ quantum spin model representation, appropriately gauged on the torus to allow for an external magnetic field. We find strong lattice effects near half filling. An effective quantum mechanical description of the vortex degrees of freedom is derived. Using semiclassical and numerical analysis we compute the vortex hopping energy, which at half filling is close to magnitude of the boson hopping energy. The critical quantum melting density of the vortex lattice is estimated at 6.5x10-5 vortices per unit cell. The Hall conductance is computed from the Chern numbers of the low energy eigenstates. At zero temperature, it reverses sign abruptly at half filling. At precisely half filling, all eigenstates are doubly degenerate for any odd number of flux quanta. We prove the exact degeneracies on the torus by constructing an SU(2) algebra of point-group symmetries, associated with the center of vorticity. This result is interpreted as if each vortex carries an internal spin-half degree of freedom ('vspin'), which can manifest itself as a charge density modulation in its core. Our findings suggest interesting experimental implications for vortex motion of cold atoms in optical lattices, and magnet-transport of short coherence length superconductors.Comment: 15 pages, 15 figure

    Systematic approach to leptogenesis in nonequilibrium QFT: vertex contribution to the CP-violating parameter

    Full text link
    The generation of a baryon asymmetry via leptogenesis is usually studied by means of classical kinetic equations whose applicability to processes in the hot and expanding early universe is questionable. The approximations implied by the state-of-the-art description can be tested in a first-principle approach based on nonequilibrium field theory techniques. Here, we apply the Schwinger-Keldysh/Kadanoff-Baym formalism to a simple toy model of leptogenesis. We find that, within the toy model, medium effects increase the vertex contribution to the CP-violating parameter. At high temperatures it is a few times larger than in vacuum and asymptotically reaches the vacuum value as the temperature decreases. Contrary to the results obtained earlier in the framework of thermal field theory, the corrections are only linear in the particle number densities. An important feature of the Kadanoff-Baym formalism is that it is free of the double-counting problem, i.e. no need for real intermediate state subtraction arises. In particular, this means that the structure of the equations automatically ensures that the asymmetry vanishes in equilibrium. These results give a first glimpse into a number of new and interesting effects that can be studied in the framework of nonequilibrium field theory.Comment: 27 pages, 21 figure

    Attosecond double-slit experiment

    Get PDF
    A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (``slits'') of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are observed. A situation in which one and the same electron encounters a single and a double slit at the same time is discussed. The investigation of the fringes makes possible interferometry on the attosecond time scale. The number of visible fringes, for example, indicates that the slits are extended over about 500as.Comment: 4 figure

    Dynamical Gauge Symmetry Breaking in SU(3)L⊗U(1)XSU(3)_L\otimes U(1)_X Extension of the Standard Model

    Full text link
    We study the SU(3)L⊗U(1)XSU(3)_L\otimes U(1)_X extension of the Standard model with a strong U(1) coupling. We argue that current experiments limit this coupling to be relatively large. The model is dynamically broken to the Standard SU(2)L⊗U(1)SU(2)_L \otimes U(1) model at the scale of a few TeV with all the extra gauge bosons and the exotic quarks acquiring masses much larger than the scale of electroweak symmetry breaking. Furthermore we find that the model leads to large dynamical mass of the top quark and hence also breaks the electroweak gauge symmetry. It therefore leads to large dynamical effects within the Standard model and can partially replace the Higgs interactions.Comment: 4 pages, revtex, no figures; revised version predicting realistic mass spectru

    A Universal Action Formula

    Get PDF
    A universal formula for an action associated with a noncommutative geometry, defined by a spectal triple (\Ac ,\Hc ,D), is proposed. It is based on the spectrum of the Dirac operator and is a geometric invariant. The new symmetry principle is the automorphism of the algebra \Ac which combines both diffeomorphisms and internal symmetries. Applying this to the geometry defined by the spectrum of the standard model gives an action that unifies gravity with the standard model at a very high energy scale.Comment: This is a short non technical letter based on the longer version, hep-th/9606001. Tex file, 10 page
    • …
    corecore