16,476 research outputs found

    The Impact of Line Misidentification on Cosmological Constraints from Euclid and other Spectroscopic Galaxy Surveys

    Full text link
    We perform forecasts for how baryon acoustic oscillation (BAO) scale and redshift-space distortion (RSD) measurements from future spectroscopic emission line galaxy (ELG) surveys such as Euclid are degraded in the presence of spectral line misidentification. Using analytic calculations verified with mock galaxy catalogs from log-normal simulations we find that constraints are degraded in two ways, even when the interloper power spectrum is modeled correctly in the likelihood. Firstly, there is a loss of signal-to-noise ratio for the power spectrum of the target galaxies, which propagates to all cosmological constraints and increases with contamination fraction, fcf_c. Secondly, degeneracies can open up between fcf_c and cosmological parameters. In our calculations this typically increases BAO scale uncertainties at the 10-20% level when marginalizing over parameters determining the broadband power spectrum shape. External constraints on fcf_c, or parameters determining the shape of the power spectrum, for example from cosmic microwave background (CMB) measurements, can remove this effect. There is a near-perfect degeneracy between fcf_c and the power spectrum amplitude for low fcf_c values, where fcf_c is not well determined from the contaminated sample alone. This has the potential to strongly degrade RSD constraints. The degeneracy can be broken with an external constraint on fcf_c, for example from cross-correlation with a separate galaxy sample containing the misidentified line, or deeper sub-surveys.Comment: 18 pages, 7 figures, updated to match version accepted by ApJ (extra paragraph added at the end of Section 4.3, minor text edits

    Galaxy-CMB and galaxy-galaxy lensing on large scales: sensitivity to primordial non-Gaussianity

    Get PDF
    A convincing detection of primordial non-Gaussianity in the local form of the bispectrum, whose amplitude is given by the fNL parameter, offers a powerful test of inflation. In this paper we calculate the modification of two-point cross-correlation statistics of weak lensing - galaxy-galaxy lensing and galaxy-Cosmic Microwave Background (CMB) cross-correlation - due to fNL. We derive and calculate the covariance matrix of galaxy-galaxy lensing including cosmic variance terms. We focus on large scales (l<100) for which the shape noise of the shear measurement becomes irrelevant and cosmic variance dominates the error budget. For a modest degree of non-Gaussianity, fNL=+/-50, modifications of the galaxy-galaxy lensing signal at the 10% level are seen on scales R~300 Mpc, and grow rapidly toward larger scales as \propto R^2. We also see a clear signature of the baryonic acoustic oscillation feature in the matter power spectrum at ~150 Mpc, which can be measured by next-generation lensing experiments. In addition we can probe the local-form primordial non-Gaussianity in the galaxy-CMB lensing signal by correlating the lensing potential reconstructed from CMB with high-z galaxies. For example, for fNL=+/-50, we find that the galaxy-CMB lensing cross power spectrum is modified by ~10% at l~40, and by a factor of two at l~10, for a population of galaxies at z=2 with a bias of 2. The effect is greater for more highly biased populations at larger z; thus, high-z galaxy surveys cross-correlated with CMB offer a yet another probe of primordial non-Gaussianity.Comment: 21 pages, 30 figure

    Search for Cosmic Strings in CMB Anisotropies

    Full text link
    We have searched the 1st-year WMAP W-Band CMB anisotropy map for evidence of cosmic strings. We have set a limit of δ=8πGμ/c2<8.2×10−6\delta = 8 \pi G \mu / c^2 < 8.2 \times 10^{-6} at 95% CL for statistical search for a significant number of strings in the map. We also have set a limit using the uniform distribution of strings model in the WMAP data with δ=8πGμ/c2<7.34×10−5\delta = 8 \pi G \mu / c^2 < 7.34 \times 10^{-5} at 95% CL. And the pattern search technique we developed here set a limit δ=8πGμ/c2<1.54×10−5\delta = 8 \pi G \mu / c^2 < 1.54 \times 10^{-5} at 95% CL.Comment: 10 pages, 8 postscript figure

    The Validity of the Cosmic String Pattern Search with the Cosmic Microwave Background

    Full text link
    We introduce a new technique to detect the discrete temperature steps that cosmic strings might have left in the cosmic microwave background (CMB) anisotropy map. The technique provides a validity test on the pattern search of cosmic strings that could serve as the groundwork for future pattern searches. The detecting power of the technique is only constrained by two unavoidable features of CMB data: (1) the finite pixelization of the sky map and (2) the Gaussian fluctuation from instrumental noise and primordial anisotropy. We set the upper limit on the cosmic string parameter as Gμ≲3.7×10−6G\mu\lesssim 3.7\times 10^{-6} at the 95% confidence level (CL) and find that the amplitude of the temperature step has to be greater than 44μK44\mu K in order to be detected for the {\it{Wilkinson Microwave Anisotropy Probe (WMAP)}} 3 year data.Comment: 9 pages, 3 figures. Revised for publicatio

    Oxidation States of Graphene: Insights from Computational Spectroscopy

    Full text link
    When it is oxidized, graphite can be easily exfoliated forming graphene oxide (GO). GO is a critical intermediate for massive production of graphene, and it is also an important material with various application potentials. With many different oxidation species randomly distributed on the basal plane, GO has a complicated nonstoichiometric atomic structure that is still not well understood in spite of of intensive studies involving many experimental techniques. Controversies often exist in experimental data interpretation. We report here a first principles study on binding energy of carbon 1s orbital in GO. The calculated results can be well used to interpret experimental X-ray photoelectron spectroscopy (XPS) data and provide a unified spectral assignment. Based on the first principles understanding of XPS, a GO structure model containing new oxidation species epoxy pair and epoxy-hydroxy pair is proposed. Our results demonstrate that first principles computational spectroscopy provides a powerful means to investigate GO structure.Comment: accepted by J. Chem. Phy

    Rules for Computing Symmetry, Density and Stoichiometry in a Quasi-Unit-Cell Model of Quasicrystals

    Full text link
    The quasi-unit cell picture describes the atomic structure of quasicrystals in terms of a single, repeating cluster which overlaps neighbors according to specific overlap rules. In this paper, we discuss the precise relationship between a general atomic decoration in the quasi-unit cell picture atomic decorations in the Penrose tiling and in related tiling pictures. Using these relations, we obtain a simple, practical method for determining the density, stoichiometry and symmetry of a quasicrystal based on the atomic decoration of the quasi-unit cell taking proper account of the sharing of atoms between clusters.Comment: 14 pages, 8 figure

    Numerical test of the damping time of layer-by-layer growth on stochastic models

    Full text link
    We perform Monte Carlo simulations on stochastic models such as the Wolf-Villain (WV) model and the Family model in a modified version to measure mean separation ℓ\ell between islands in submonolayer regime and damping time t~\tilde t of layer-by-layer growth oscillations on one dimension. The stochastic models are modified, allowing diffusion within interval rr upon deposited. It is found numerically that the mean separation and the damping time depend on the diffusion interval rr, leading to that the damping time is related to the mean separation as t~∼ℓ4/3{\tilde t} \sim \ell^{4/3} for the WV model and t~∼ℓ2{\tilde t} \sim \ell^2 for the Family model. The numerical results are in excellent agreement with recent theoretical predictions.Comment: 4 pages, source LaTeX file and 5 PS figure

    Unified entropy, entanglement measures and monogamy of multi-party entanglement

    Full text link
    We show that restricted shareability of multi-qubit entanglement can be fully characterized by unified-(q,s)(q,s) entropy. We provide a two-parameter class of bipartite entanglement measures, namely unified-(q,s)(q,s) entanglement with its analytic formula in two-qubit systems for q≥1q\geq 1, 0≤s≤10\leq s \leq1 and qs≤3qs\leq3. Using unified-(q,s)(q,s) entanglement, we establish a broad class of the monogamy inequalities of multi-qubit entanglement for q≥2q\geq2, 0≤s≤10\leq s \leq1 and qs≤3qs\leq3.Comment: 17 pages, 1 figur

    Determination of αs\alpha_s from Gross-Llewellyn Smith sum rule by accounting for infrared renormalon

    Full text link
    We recapitulate the method which resums the truncated perturbation series of a physical observable in a way which takes into account the structure of the leading infrared renormalon. We apply the method to the Gross-Llewellyn Smith (GLS) sum rule. By confronting the obtained result with the experimentally extracted GLS value, we determine the value of the QCD coupling parameter which turns out to agree with the present world average.Comment: invited talk by G.C. in WG3 of NuFact02, July 1-6, 2002, London; 4 pages, revte
    • …
    corecore