33 research outputs found
Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces
We study the heat transfer between two parallel metallic semi-infinite media
with a gap in the nanometer-scale range. We show that the near-field radiative
heat flux saturates at distances smaller than the metal skin depth when using a
local dielectric constant and investigate the origin of this effect. The effect
of non-local corrections is analysed using the Lindhard-Mermin and
Boltzmann-Mermin models. We find that local and non-local models yield the same
heat fluxes for gaps larger than 2 nm. Finally, we explain the saturation
observed in a recent experiment as a manifestation of the skin depth and show
that heat is mainly dissipated by eddy currents in metallic bodies.Comment: Version without figures (8 figures in the complete version
Near-field induction heating of metallic nanoparticles due to infrared magnetic dipole contribution
We revisit the electromagnetic heat transfer between a metallic nanoparticle
and a metallic semi-infinite substrate, commonly studied using the electric
dipole approximation. For infrared and microwave frequencies, we find that the
magnetic polarizability of the particle is larger than the electric one. We
also find that the local density of states in the near field is dominated by
the magnetic contribution. As a consequence, the power absorbed by the particle
in the near field is due to dissipation by fluctuating eddy currents. These
results show that a number of near-field effects involving metallic particles
should be affected by the fluctuating magnetic fields.Comment: publi\'e dans Physical Review B 77 (2008), version avant revie
Supervision of a self-driving vehicle unmasks latent sleepiness relative to manually controlled driving
Human error has been implicated as a causal factor in a large proportion of road accidents. Automated driving systems purport to mitigate this risk, but self-driving systems that allow a driver to entirely disengage from the driving task also require the driver to monitor the environment and take control when necessary. Given that sleep loss impairs monitoring performance and there is a high prevalence of sleep deficiency in modern society, we hypothesized that supervising a self-driving vehicle would unmask latent sleepiness compared to manually controlled driving among individuals following their typical sleep schedules. We found that participants felt sleepier, had more involuntary transitions to sleep, had slower reaction times and more attentional failures, and showed substantial modifications in brain synchronization during and following an autonomous drive compared to a manually controlled drive. Our findings suggest that the introduction of partial self-driving capabilities in vehicles has the potential to paradoxically increase accident risk
Effect of hydration on the water content of human erythrocytes.
An ideal, hydrated, nondilute pseudobinary salt-protein-water solution model of the RBC intracellular solution has been developed to describe the osmotic behavior of human erythrocytes during freezing and thawing. Because of the hydration of intracellular solutes (mostly cell proteins), our analytical results predict that at least 16.65% of the isotonic cell water content will be retained within RBCs placed in hypertonic solutions. These findings are consistent not only with the experimental measurements of the amount of isotonic cell water retained within RBCs subjected to nonisotonic extracellular solutions (20-32%) but also with the experimental evidence that all of the water within RBCs is solvent water. By modeling the RBC intracellular solution as a hydrated salt-protein-water solution, no anomalous osmotic behavior is apparent