2,052 research outputs found

    Implementing tradable permits for sulfur oxides emissions : a case study in the South Coast Air Basin

    Get PDF
    Tradable emissions permits have important theoretical advantages over source-specific technical standards as a means for controlling pollution. Nonetheless, difficulties can arise in trying to implement an efficient, competitive market in emissions permits. Simple workable versions of the market concept may fail to achieve the competitive equilibrium, or to take account of important complexities in the relationship between the pattern of emissions and the geographical distribution of pollution. Existing regulatory law may severely limit the range of market opportunities that states can adopt. This report examines the feasibility of tradable permits for controlling particulate sulfates in the Los Angeles airshed. Although the empirical part of the paper deals with a specific case, the methods developed have general applicability. Moreover, the particular market design that is proposed -- an auction process that involves no net revenue collection by the state -- has attractive features as a general model

    On the consistency of scale among experiments, theory, and simulation

    Get PDF
    As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examine a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. We demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area

    Optimal Bail and the Value of Freedom: Evidence from the Philadelphia Bail Experiment

    Full text link

    Valuing Laws as Local Amenities

    Full text link

    Second-Order Perfectionism

    Full text link

    The Availability Heuristic, Intuitive Cost-Benefit Analysis, and Climate Change

    Get PDF
    Because risks are on all sides of social situations, it is not possible to be “precautionary” in general. The availability heuristic ensures that some risks stand out as particularly salient, whatever their actual magnitude. Taken together with intuitive cost-benefit balancing, the availability heuristic helps to explain differences across groups, cultures, and even nations in the assessment of precautions to reduce the risks associated with climate change. There are complex links among availability, social processes for the spreading of information, and predispositions. If the United States is to take a stronger stand against climate change, it is likely to be a result of available incidents that seem to show that climate change produces serious and tangible harm

    Electric single-molecule hybridization detector for short DNA fragments

    Get PDF
    By combining DNA nanotechnology and high-bandwidth single-molecule detection in nanopipets, we demonstrate an electric, label-free hybridization sensor for short DNA sequences (<100 nucleotides). Such short fragments are known to occur as circulating cell-free DNA in various bodily fluids, such as blood plasma and saliva, and have been identified as disease markers for cancer and infectious diseases. To this end, we use as a model system an 88-mer target from the RV1910c gene in Mycobacterium tuberculosis, which is associated with antibiotic (isoniazid) resistance in TB. Upon binding to short probes attached to long carrier DNA, we show that resistive-pulse sensing in nanopipets is capable of identifying rather subtle structural differences, such as the hybridization state of the probes, in a statistically robust manner. With significant potential toward multiplexing and high-throughput analysis, our study points toward a new, single-molecule DNA-assay technology that is fast, easy to use, and compatible with point-of-care environments
    corecore