130 research outputs found

    Optical RKKY Interaction between Charged Semiconductor Quantum Dots

    Full text link
    We show how a spin interaction between electrons localized in neighboring quantum dots can be induced and controlled optically. The coupling is generated via virtual excitation of delocalized excitons and provides an efficient coherent control of the spins. This quantum manipulation can be realized in the adiabatic limit and is robust against decoherence by spontaneous emission. Applications to the realization of quantum gates, scalable quantum computers, and to the control of magnetization in an array of charged dots are proposed.Comment: 4 pages, 2 figure

    Dynamical Localization: Hydrogen Atoms in Magnetic and Microwave fields

    Full text link
    We show that dynamical localization for excited hydrogen atoms in magnetic and microwave fields takes place at quite low microwave frequency much lower than the Kepler frequency. The estimates of localization length are given for different parameter regimes, showing that the quantum delocalization border drops significantly as compared to the case of zero magnetic field. This opens up broad possibilities for laboratory investigations.Comment: revtex, 11 pages, 3 figures, to appear in Phys. Rev. A, Feb (1997

    Unification of the conditional probability and semiclassical interpretations for the problem of time in quantum theory

    Full text link
    We show that the time-dependent Schr\"odinger equation (TDSE) is the phenomenological dynamical law of evolution unraveled in the classical limit from a timeless formulation in terms of probability amplitudes conditioned by the values of suitably chosen internal clock variables, thereby unifying the conditional probability interpretation (CPI) and the semiclassical approach for the problem of time in quantum theory. Our formalism stems from an exact factorization of the Hamiltonian eigenfunction of the clock plus system composite, where the clock and system factors play the role of marginal and conditional probability amplitudes, respectively. Application of the Variation Principle leads to a pair of exact coupled pseudoeigenvalue equations for these amplitudes, whose solution requires an iterative self-consistent procedure. The equation for the conditional amplitude constitutes an effective "equation of motion" for the quantum state of the system with respect to the clock variables. These coupled equations also provide a convenient framework for treating the back-reaction of the system on the clock at various levels of approximation. At the lowest level, when the WKB approximation for the marginal amplitude is appropriate, in the classical limit of the clock variables the TDSE for the system emerges as a matter of course from the conditional equation. In this connection, we provide a discussion of the characteristics required by physical systems to serve as good clocks. This development is seen to be advantageous over the original CPI and semiclassical approach since it maintains the essence of the conventional formalism of quantum mechanics, admits a transparent interpretation, avoids the use of the Born-Oppenheimer approximation, and resolves various objections raised about them.Comment: 10 pages. Typographical errors correcte

    Frequency Dependence of Quantum Localization in a Periodically Driven System

    Full text link
    We study the quantum localization phenomena for a random matrix model belonging to the Gaussian orthogonal ensemble (GOE). An oscillating external field is applied on the system. After the transient time evolution, energy is saturated to various values depending on the frequencies. We investigate the frequency dependence of the saturated energy. This dependence cannot be explained by a naive picture of successive independent Landau-Zener transitions at avoided level crossing points. The effect of quantum interference is essential. We define the number of Floquet states which have large overlap with the initial state, and calculate its frequency dependence. The number of Floquet states shows approximately linear dependence on the frequency, when the frequency is small. Comparing the localization length in Floquet states and that in energy states from the viewpoint of the Anderson localization, we conclude that the Landau-Zener picture works for the local transition processes between levels.Comment: 12 pages and 6 figure

    Hundred photon microwave ionization of Rydberg atoms in a static electric field

    Full text link
    We present analytical and numerical results for the microwave excitation of nonhydrogenic atoms in a static electric field when up to 1000 photons are required to ionize an atom. For small microwave fields, dynamical localization in photon number leads to exponentially small ionization while above quantum delocalization border ionization goes in a diffusive way. For alkali atoms in a static field the ionization border is much lower than in hydrogen due to internal chaos.Comment: revtex, 4 pages, 5 figure

    Quantum Poincare Recurrences for Hydrogen Atom in a Microwave Field

    Full text link
    We study the time dependence of the ionization probability of Rydberg atoms driven by a microwave field, both in classical and in quantum mechanics. The quantum survival probability follows the classical one up to the Heisenberg time and then decays algebraically as P(t) ~ 1/t. This decay law derives from the exponentially long times required to escape from some region of the phase space, due to tunneling and localization effects. We also provide parameter values which should allow to observe such decay in laboratory experiments.Comment: revtex, 4 pages, 4 figure

    Diffusive Ionization of Relativistic Hydrogen-Like Atom

    Full text link
    Stochastic ionization of highly excited relativistic hydrogenlike atom in the monochromatic field is investigated. A theoretical analisis of chaotic dynamics of the relativistic electron based on Chirikov criterion is given for the cases of one- and three-dimensional atoms. Critical value of the external field is evaluated analitically. The diffusion coefficient and ionization time are calculated.Comment: 13 pages, latex, no figures, submitted to PR

    Stochastic ionization through noble tori: Renormalization results

    Full text link
    We find that chaos in the stochastic ionization problem develops through the break-up of a sequence of noble tori. In addition to being very accurate, our method of choice, the renormalization map, is ideally suited for analyzing properties at criticality. Our computations of chaos thresholds agree closely with the widely used empirical Chirikov criterion

    Dynamical Stability and Quantum Chaos of Ions in a Linear Trap

    Full text link
    The realization of a paradigm chaotic system, namely the harmonically driven oscillator, in the quantum domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.Comment: 24 pages, 17 figures, submitted to Phys. Rev
    corecore