862 research outputs found

    RR Lyrae variables in the globular cluster M3 (NGC5272). I. BVI CCD photometry

    Full text link
    New BVI CCD photometry is presented for 60 RR Lyrae variables in the globular cluster M3. Light curves have been constructed and ephemerides have been (re)-derived for all of them. Four stars (i.e. V29, V136, V155 and V209), although recognized as variables, had no previous period determinations. Also, the period derived for V129 is significantly different from the one published by Sawyer-Hogg (1973). Light curve parameters, i.e. mean magnitudes, amplitudes and rise-times, have been derived. The discussion of these results in the framework of the stellar evolution and pulsation theories will be presented in a forthcoming paper.Comment: 19 pages, latex, uses mn.sty, 12 encapsulated figures, to be published in MNRAS, text and figures also available at http://www.bo.astro.it/bap/BAPhome.html or via anonymous ftp at ftp://boas3.bo.astro.it/bap/files (bap98-12-textfig.ps

    BVI Photometry and the Luminosity Function of the Globular Cluster M92

    Get PDF
    We present new BVI ground-based photometry and VI space-based photometry for the globular cluster M92 (NGC 6341) and examine luminosity functions in B, V, and I containing over 50,000 stars ranging from the tip of the red giant branch to several magnitudes below the main sequence turn off. Once corrected for completeness, the observed luminosity functions agree very well with theoretical models and do not show stellar excesses in any region of the luminosity function. Using reduced chi squared fitting, the new M92 luminosity function is shown to be an excellent match to the previously published luminosity function for M30. These points combine to establish that the "subgiant excess" found in previously published luminosity functions of Galactic globular clusters are due to deficiencies in the stellar models used at that time. Using up to date stellar models results in good agreement between observations and theory. Several statistical methods are presented to best determine the age of M92. These methods prove to be insensitive to the exact choice of metallicity within the published range. Using [Fe/H]=-2.17 to match recent studies we find an age of 14.2 plus or minus 1.2 Gyr for the cluster.Comment: 22 pages, 13 figures, 3 tables, accepted for publication in A

    An empirical mass-loss law for Population II giants from the Spitzer-IRAC survey of Galactic globular clusters

    Full text link
    The main aim of the present work is to derive an empirical mass-loss (ML) law for Population II stars in first and second ascent red giant branches. We used the Spitzer InfraRed Array Camera (IRAC) photometry obtained in the 3.6-8 micron range of a carefully chosen sample of 15 Galactic globular clusters spanning the entire metallicity range and sampling the vast zoology of horizontal branch (HB) morphologies. We complemented the IRAC photometry with near-infrared data to build suitable color-magnitude and color-color diagrams and identify mass-losing giant stars. We find that while the majority of stars show colors typical of cool giants, some stars show an excess of mid-infrared light that is larger than expected from their photospheric emission and that is plausibly due to dust formation in mass flowing from them. For these stars, we estimate dust and total (gas + dust) ML rates and timescales. We finally calibrate an empirical ML law for Population II red and asymptotic giant branch stars with varying metallicity. We find that at a given red giant branch luminosity only a fraction of the stars are losing mass. From this, we conclude that ML is episodic and is active only a fraction of the time, which we define as the duty cycle. The fraction of mass-losing stars increases by increasing the stellar luminosity and metallicity. The ML rate, as estimated from reasonable assumptions for the gas-to-dust ratio and expansion velocity, depends on metallicity and slowly increases with decreasing metallicity. In contrast, the duty cycle increases with increasing metallicity, with the net result that total ML increases moderately with increasing metallicity, about 0.1 Msun every dex in [Fe/H]. For Population II asymptotic giant branch stars, we estimate a total ML of <0.1 Msun, nearly constant with varying metallicity.Comment: 17 pages, 9 figures, in press on A&

    Globular Clusters in the Magellanic Clouds.I:BV CCD-Photometry for 11 Clusters

    Get PDF
    We present BV CCD-data for 11 intermediate-age LMC clusters; the main conclusions are: 1. in the (V_to, V_cl,m) and (V-to, (V_to-V_cl,m)) planes the models yield a good overall description of the data; 2. with the current sample, it is impossible to firmly choose between "classical" and "overshooting" models; 3. the separation in colour between the MS band and the Red He-burning Clump is smaller than predicted by theoretical tracks; 4. the existence of the so-called "RGB phase-transition (Renzini and Buzzoni 1986) seems to be confirmed.Comment: 62 pages, 37 figures and tables 6 to 16 available on request, uuencoded compressed postscript file with tables 1-5 and 17-18 included, BAP 08-1994-020-OA

    Discovery of Carbon/Oxygen depleted Blue Straggler Stars in 47 Tucanae: the chemical signature of a mass-transfer formation process

    Get PDF
    We use high-resolution spectra obtained with the ESO Very Large Telescope to measure surface abundance patterns of 43 Blue Stragglers stars (BSS) in 47 Tuc. We discovered that a sub-population of BSS shows a significant depletion of Carbon and Oxygen with respect to the dominant population. This evidence would suggest the presence of CNO burning products on the BSS surface coming from a deeply peeled parent star, as expected in the case of mass-transfer process. This is the first detection of a chemical signature clearly pointing to a specific BSS formation process in a globular cluster.Comment: Published on 2006, August 10, in ApJ 647, L5

    Theoretical Uncertainties in Red Giant Branch Evolution: The Red Giant Branch Bump

    Get PDF
    A Monte Carlo simulation exploring uncertainties in standard stellar evolution theory on the red giant branch of metal-poor globular clusters has been conducted. Confidence limits are derived on the absolute V-band magnitude of the bump in the red giant branch luminosity function (M_v,b) and the excess number of stars in thebump, R_b. The analysis takes into account uncertainties in the primordial helium abundance, abundance of alpha-capture elements, radiative and conductive opacities, nuclear reaction rates, neutrino energy losses, the treatments of diffusion and convection, the surface boundary conditions, and color transformations. The uncertainty in theoretical values for the red giant bump magnitude varies with metallicity between +0.13/-0.12 mag at [Fe/H] = -2.4 and +0.23/-0.21 mag at [Fe/H] = -1.0.Thedominantsourcesofuncertaintyaretheabundanceofthealpha−captureelements,themixinglength,andthelow−temperatureopacities.ThetheoreticalvaluesofMv,bareingoodagreementwithobservations.TheuncertaintyinthetheoreticalvalueofRbis+/−0.01atallmetallicitiesstudied.Thedominantsourcesofuncertaintyaretheabundanceofthealpha−captureelements,themixinglength,andthehigh−temperatureopacities.ThemedianvalueofRbvariesfrom0.44at[Fe/H]=−2.4. The dominant sources of uncertainty are the abundance of the alpha-capture elements, the mixing length, and the low-temperature opacities. The theoretical values of M_v,b are in good agreement with observations. The uncertainty in the theoretical value of R_b is +/-0.01 at all metallicities studied. The dominant sources of uncertainty are the abundance of the alpha-capture elements, the mixing length, and the high-temperature opacities. The median value of R_b varies from 0.44 at [Fe/H] = -2.4 to 0.50 at [Fe/H] = -1.0. These theoretical values for R_b are in agreement with observations.Comment: 30 pages, 6 figures. To appear in Ap
    • 

    corecore