10,332 research outputs found

    On the approach to equilibrium of an Hamiltonian chain of anharmonic oscillators

    Full text link
    In this note we study the approach to equilibrium of a chain of anharmonic oscillators. We find indications that a sufficiently large system always relaxes to the usual equilibrium distribution. There is no sign of an ergodicity threshold. The time however to arrive to equilibrium diverges when g0g \to 0, gg being the anharmonicity.Comment: 8 pages, 5 figure

    Meteoroids: The Smallest Solar System Bodies

    Get PDF
    This volume is a compilation of articles reflecting the current state of knowledge on the physics, chemistry, astronomy, and aeronomy of small bodies in the solar system. The articles included here represent the most recent results in meteor, meteoroid, and related research fields and were presented May 24-28, 2010, in Breckenridge, Colorado, USA at Meteoroids 2010: An International Conference on Minor Bodies in the Solar System

    Exciton and Carrier Dynamics in 2D Perovskites

    Full text link
    Two-dimensional Ruddlesden-Popper hybrid lead halide perovskites have become a major topic in perovskite optoelectronics. Here, we aim to unravel the ultrafast dynamics governing the evolution of charge carriers and excitons in these materials. Using a combination of ultrabroadband time-resolved THz (TRTS) and fluorescence upconversion spectroscopies, we find that sequential carrier cooling and exciton formation best explain the observed dynamics, where exciton-exciton interactions play an important role in the form of Auger heating and biexciton formation. We show that the presence of a longer-lived population of carriers is due to these processes and not to a Mott transition. Therefore, excitons still dominate at laser excitation densities. We use kinetic modeling to compare the phenethylammonium and butylammonium organic cations while investigating the stability of the resulting films. In addition, we demonstrate the capability of using ultrabroadband TRTS to study excitons in large binding energy semiconductors through spectral analysis at room temperature

    Generalization of a result of Matsuo and Cherednik to the Calogero-Sutherland- Moser integrable models with exchange terms

    Full text link
    A few years ago, Matsuo and Cherednik proved that from some solutions of the Knizhnik-Zamolodchikov (KZ) equations, which first appeared in conformal field theory, one can obtain wave functions for the Calogero integrable system. In the present communication, it is shown that from some solutions of generalized KZ equations, one can construct wave functions, characterized by any given permutational symmetry, for some Calogero-Sutherland-Moser integrable models with exchange terms. Such models include the spin generalizations of the original Calogero and Sutherland ones, as well as that with δ\delta-function interaction.Comment: Latex, 7 pages, Communication at the 4th Colloquium "Quantum Groups and Integrable Systems", Prague (June 1995

    Additional Constants of Motion for a Discretization of the Calogero--Moser Model

    Full text link
    The maximal super-integrability of a discretization of the Calogero--Moser model introduced by Nijhoff and Pang is presented. An explicit formula for the additional constants of motion is given.Comment: 7 pages, no figure

    Equilibria of `Discrete' Integrable Systems and Deformations of Classical Orthogonal Polynomials

    Full text link
    The Ruijsenaars-Schneider systems are `discrete' version of the Calogero-Moser (C-M) systems in the sense that the momentum operator p appears in the Hamiltonians as a polynomial in e^{\pm\beta' p} (\beta' is a deformation parameter) instead of an ordinary polynomial in p in the hierarchies of C-M systems. We determine the polynomials describing the equilibrium positions of the rational and trigonometric Ruijsenaars-Schneider systems based on classical root systems. These are deformation of the classical orthogonal polynomials, the Hermite, Laguerre and Jacobi polynomials which describe the equilibrium positions of the corresponding Calogero and Sutherland systems. The orthogonality of the original polynomials is inherited by the deformed ones which satisfy three-term recurrence and certain functional equations. The latter reduce to the celebrated second order differential equations satisfied by the classical orthogonal polynomials.Comment: 45 pages. A few typos in section 6 are correcte

    Quantum vs Classical Integrability in Ruijsenaars-Schneider Systems

    Full text link
    The relationship (resemblance and/or contrast) between quantum and classical integrability in Ruijsenaars-Schneider systems, which are one parameter deformation of Calogero-Moser systems, is addressed. Many remarkable properties of classical Calogero and Sutherland systems (based on any root system) at equilibrium are reported in a previous paper (Corrigan-Sasaki). For example, the minimum energies, frequencies of small oscillations and the eigenvalues of Lax pair matrices at equilibrium are all "integer valued". In this paper we report that similar features and results hold for the Ruijsenaars-Schneider type of integrable systems based on the classical root systems.Comment: LaTeX2e with amsfonts 15 pages, no figure

    Knizhnik-Zamolodchikov equations and the Calogero-Sutherland-Moser integrable models with exchange terms

    Get PDF
    It is shown that from some solutions of generalized Knizhnik-Zamolodchikov equations one can construct eigenfunctions of the Calogero-Sutherland-Moser Hamiltonians with exchange terms, which are characterized by any given permutational symmetry under particle exchange. This generalizes some results previously derived by Matsuo and Cherednik for the ordinary Calogero-Sutherland-Moser Hamiltonians.Comment: 13 pages, LaTeX, no figures, to be published in J. Phys.

    Angle-Resolved Photoemission Spectroscopy of Tetragonal CuO: Evidence for Intralayer Coupling Between Cupratelike Sublattices

    Get PDF
    We investigate by angle-resolved photoemission the electronic structure of in situ grown tetragonal CuO, a synthetic quasi-two-dimensional edge-sharing cuprate. We show that, in spite of the very different nature of the copper oxide layers, with twice as many Cu in the CuO layers of tetragonal CuO as compared to the CuO2 layers of the high-T-c cuprates, the low-energy electronic excitations are surprisingly similar, with a Zhang-Rice singlet dispersing on weakly coupled cupratelike sublattices. This system should thus be considered as a member of the high-T-c cuprate family, with, however, interesting differences due to the intralayer coupling between the cupratelike sublattices.open1199sciescopu
    corecore